Salman Nazir, Brad Price, Nanda C Surendra, Katherine Kopp
{"title":"为超敏捷环境调整敏捷开发实践:从 COVID-19 应急响应研究项目中汲取的经验教训。","authors":"Salman Nazir, Brad Price, Nanda C Surendra, Katherine Kopp","doi":"10.1007/s10799-022-00370-y","DOIUrl":null,"url":null,"abstract":"<p><p>Agile development is known for efficient software development practices that enable teams to quickly develop software to cope with changing requirements. Although there is evidence that agile practices are helpful in such environments, the literature does not inform us as to whether agile practices can also be beneficial in hyper-agile environments. Such environments are characterized by an extremely fast pace of change with fluid requirements. COVID-19 vaccine distribution is one such problem that governments have had to deal with. To solve this problem, governments need to come up with robust responses by formulating teams that have the capability to provide software solutions enabling information visibility into the vaccine distribution process. Such emergent teams need to quickly understand the distribution process, oftentimes define the process itself because it might be non-existent, and build software systems to solve the problem in a matter of days. Not much is known about how systems can be developed at such a fast pace. We adopt a clinical research methodology and employ agile software development practices to develop such a mission-critical system. In the process of building the system, we learn important lessons that can be used to adapt and extend agile methodologies to be used in hyper-agile development environments. We offer these lessons as important first steps to understanding the best practices needed to develop software systems that have the capability to provide visibility into the unprecedented health challenge of distribution of life-saving COVID-19 vaccine.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362493/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adapting agile development practices for hyper-agile environments: lessons learned from a COVID-19 emergency response research project.\",\"authors\":\"Salman Nazir, Brad Price, Nanda C Surendra, Katherine Kopp\",\"doi\":\"10.1007/s10799-022-00370-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Agile development is known for efficient software development practices that enable teams to quickly develop software to cope with changing requirements. Although there is evidence that agile practices are helpful in such environments, the literature does not inform us as to whether agile practices can also be beneficial in hyper-agile environments. Such environments are characterized by an extremely fast pace of change with fluid requirements. COVID-19 vaccine distribution is one such problem that governments have had to deal with. To solve this problem, governments need to come up with robust responses by formulating teams that have the capability to provide software solutions enabling information visibility into the vaccine distribution process. Such emergent teams need to quickly understand the distribution process, oftentimes define the process itself because it might be non-existent, and build software systems to solve the problem in a matter of days. Not much is known about how systems can be developed at such a fast pace. We adopt a clinical research methodology and employ agile software development practices to develop such a mission-critical system. In the process of building the system, we learn important lessons that can be used to adapt and extend agile methodologies to be used in hyper-agile development environments. We offer these lessons as important first steps to understanding the best practices needed to develop software systems that have the capability to provide visibility into the unprecedented health challenge of distribution of life-saving COVID-19 vaccine.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362493/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1007/s10799-022-00370-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s10799-022-00370-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Adapting agile development practices for hyper-agile environments: lessons learned from a COVID-19 emergency response research project.
Agile development is known for efficient software development practices that enable teams to quickly develop software to cope with changing requirements. Although there is evidence that agile practices are helpful in such environments, the literature does not inform us as to whether agile practices can also be beneficial in hyper-agile environments. Such environments are characterized by an extremely fast pace of change with fluid requirements. COVID-19 vaccine distribution is one such problem that governments have had to deal with. To solve this problem, governments need to come up with robust responses by formulating teams that have the capability to provide software solutions enabling information visibility into the vaccine distribution process. Such emergent teams need to quickly understand the distribution process, oftentimes define the process itself because it might be non-existent, and build software systems to solve the problem in a matter of days. Not much is known about how systems can be developed at such a fast pace. We adopt a clinical research methodology and employ agile software development practices to develop such a mission-critical system. In the process of building the system, we learn important lessons that can be used to adapt and extend agile methodologies to be used in hyper-agile development environments. We offer these lessons as important first steps to understanding the best practices needed to develop software systems that have the capability to provide visibility into the unprecedented health challenge of distribution of life-saving COVID-19 vaccine.