电刺激促进伤口愈合:电子纺织品的机遇。

IF 17.2 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL
Tom Greig;Russel Torah;Kai Yang
{"title":"电刺激促进伤口愈合:电子纺织品的机遇。","authors":"Tom Greig;Russel Torah;Kai Yang","doi":"10.1109/RBME.2022.3210598","DOIUrl":null,"url":null,"abstract":"Ulcers and chronic wounds are a large and expensive problem, costing billions of pounds a year and affecting millions of people. Electrical stimulation has been known to have a positive effect on wound healing since the 1960s and this has been confirmed in numerous studies, reducing the time to heal, and the incidence of adverse events such as infections. However, because each study used different parameters for the treatment, inclusion criteria and metrics for quantifying the success, it is currently hard to combine them statistically and gain a true picture of its efficacy. As such, electrical stimulation has not been universally adopted as a recommended treatment for various types of wound. This paper summarises the biological basis for electrical simulation treatment and reviews the clinical evidence for its effectiveness. Notable is the lack of research focused on the electrodes used to deliver electrostimulation treatment. However, a significant amount of work has been conducted on electrodes for other medical applications in the field of e-textiles. This e-textile work is reviewed with a focus on its potential in electrostimulation and proposals are made for future developments to improve future studies and applications for wound healing via electrical stimulation.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"264-279"},"PeriodicalIF":17.2000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical Stimulation for Wound Healing: Opportunities for E-Textiles\",\"authors\":\"Tom Greig;Russel Torah;Kai Yang\",\"doi\":\"10.1109/RBME.2022.3210598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ulcers and chronic wounds are a large and expensive problem, costing billions of pounds a year and affecting millions of people. Electrical stimulation has been known to have a positive effect on wound healing since the 1960s and this has been confirmed in numerous studies, reducing the time to heal, and the incidence of adverse events such as infections. However, because each study used different parameters for the treatment, inclusion criteria and metrics for quantifying the success, it is currently hard to combine them statistically and gain a true picture of its efficacy. As such, electrical stimulation has not been universally adopted as a recommended treatment for various types of wound. This paper summarises the biological basis for electrical simulation treatment and reviews the clinical evidence for its effectiveness. Notable is the lack of research focused on the electrodes used to deliver electrostimulation treatment. However, a significant amount of work has been conducted on electrodes for other medical applications in the field of e-textiles. This e-textile work is reviewed with a focus on its potential in electrostimulation and proposals are made for future developments to improve future studies and applications for wound healing via electrical stimulation.\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":\"17 \",\"pages\":\"264-279\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9905965/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9905965/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

溃疡和慢性伤口是一个巨大而昂贵的问题,每年花费数十亿英镑,影响数百万人。自 20 世纪 60 年代以来,人们就知道电刺激对伤口愈合有积极作用,这一点已被大量研究证实,它可以缩短愈合时间,降低感染等不良事件的发生率。然而,由于每项研究使用的治疗参数、纳入标准和量化成功的指标都不尽相同,因此目前很难将它们进行统计合并,从而获得其疗效的真实情况。因此,电刺激尚未被普遍采纳为治疗各类伤口的推荐方法。本文总结了电模拟治疗的生物学基础,并回顾了其有效性的临床证据。值得注意的是,缺乏对电刺激治疗所用电极的研究。不过,在电子纺织品领域,对用于其他医疗应用的电极进行了大量研究。本文对电子纺织品的研究工作进行了回顾,重点关注其在电刺激方面的潜力,并对未来的发展提出了建议,以改善未来通过电刺激进行伤口愈合的研究和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical Stimulation for Wound Healing: Opportunities for E-Textiles
Ulcers and chronic wounds are a large and expensive problem, costing billions of pounds a year and affecting millions of people. Electrical stimulation has been known to have a positive effect on wound healing since the 1960s and this has been confirmed in numerous studies, reducing the time to heal, and the incidence of adverse events such as infections. However, because each study used different parameters for the treatment, inclusion criteria and metrics for quantifying the success, it is currently hard to combine them statistically and gain a true picture of its efficacy. As such, electrical stimulation has not been universally adopted as a recommended treatment for various types of wound. This paper summarises the biological basis for electrical simulation treatment and reviews the clinical evidence for its effectiveness. Notable is the lack of research focused on the electrodes used to deliver electrostimulation treatment. However, a significant amount of work has been conducted on electrodes for other medical applications in the field of e-textiles. This e-textile work is reviewed with a focus on its potential in electrostimulation and proposals are made for future developments to improve future studies and applications for wound healing via electrical stimulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Reviews in Biomedical Engineering
IEEE Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
31.70
自引率
0.60%
发文量
93
期刊介绍: IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信