Yan-Ding Su, Xin-Yi Wei, Xiao-Hang Su, Ghulam Woshur, Xiao-Nan Geng, Xiang-Jun Qiu
{"title":"超高效液相色谱-质谱联用法测定比格犬血浆中托非福的含量及其药动学研究。","authors":"Yan-Ding Su, Xin-Yi Wei, Xiao-Hang Su, Ghulam Woshur, Xiao-Nan Geng, Xiang-Jun Qiu","doi":"10.1155/2022/2823214","DOIUrl":null,"url":null,"abstract":"<p><p>The primary objective of this study was to develop and validate an efficient and accurate ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach as a means to detect tropifexor plasma concentrations in beagle dogs and to study its pharmacokinetic profile in beagle dogs. The chromatographic separation of tropifexor and oprozomib (internal standard, ISTD) on the column, with the addition of acetonitrile for rapid precipitation and protein extraction, was achieved with 0.1% formic acid aqueous solution-acetonitrile for the mobile phase. A Xevo TQ-S triple quadrupole tandem mass spectrometer, under the selective reaction monitoring (SRM) mode, for the determination of the concentrations in the positive ion mode. The mass transfer pairs of tropifexor and oprozomib (ISTD) were m/z 604.08 ⟶ 228.03 and m/z 533.18 ⟶ 199.01, respectively. The profile displayed well linearity with calibration curves for tropifexor and oprozomib (ISTD) ranging from 1.0 to 200 ng/mL. In parallel, the lower limit of quantification (LLOQ) value for tropifexor could be measured with the aid of this novel technique at 1.0 ng/mL. In addition, the scope of intraday and interday for analyte accuracy was between -4.86% and 1.16%, with a precision of <7.31%. The recoveries of the analytes were >88.13% and were free of significant matrix effects. The stability met the requirements for the quantification of plasma samples under various conditions. Finally, the pharmacokinetic profile of tropifexor in beagle dog plasma following oral administration of 0.33 mg/kg tropifexor was determined by using the method facilitated in this work.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9509244/pdf/","citationCount":"1","resultStr":"{\"title\":\"Determination of Tropifexor in Beagle Dog Plasma by UPLC-MS/MS and Its Application in Pharmacokinetics.\",\"authors\":\"Yan-Ding Su, Xin-Yi Wei, Xiao-Hang Su, Ghulam Woshur, Xiao-Nan Geng, Xiang-Jun Qiu\",\"doi\":\"10.1155/2022/2823214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The primary objective of this study was to develop and validate an efficient and accurate ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach as a means to detect tropifexor plasma concentrations in beagle dogs and to study its pharmacokinetic profile in beagle dogs. The chromatographic separation of tropifexor and oprozomib (internal standard, ISTD) on the column, with the addition of acetonitrile for rapid precipitation and protein extraction, was achieved with 0.1% formic acid aqueous solution-acetonitrile for the mobile phase. A Xevo TQ-S triple quadrupole tandem mass spectrometer, under the selective reaction monitoring (SRM) mode, for the determination of the concentrations in the positive ion mode. The mass transfer pairs of tropifexor and oprozomib (ISTD) were m/z 604.08 ⟶ 228.03 and m/z 533.18 ⟶ 199.01, respectively. The profile displayed well linearity with calibration curves for tropifexor and oprozomib (ISTD) ranging from 1.0 to 200 ng/mL. In parallel, the lower limit of quantification (LLOQ) value for tropifexor could be measured with the aid of this novel technique at 1.0 ng/mL. In addition, the scope of intraday and interday for analyte accuracy was between -4.86% and 1.16%, with a precision of <7.31%. The recoveries of the analytes were >88.13% and were free of significant matrix effects. The stability met the requirements for the quantification of plasma samples under various conditions. Finally, the pharmacokinetic profile of tropifexor in beagle dog plasma following oral administration of 0.33 mg/kg tropifexor was determined by using the method facilitated in this work.</p>\",\"PeriodicalId\":14974,\"journal\":{\"name\":\"Journal of Analytical Methods in Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9509244/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Methods in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/2823214\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/2823214","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Determination of Tropifexor in Beagle Dog Plasma by UPLC-MS/MS and Its Application in Pharmacokinetics.
The primary objective of this study was to develop and validate an efficient and accurate ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach as a means to detect tropifexor plasma concentrations in beagle dogs and to study its pharmacokinetic profile in beagle dogs. The chromatographic separation of tropifexor and oprozomib (internal standard, ISTD) on the column, with the addition of acetonitrile for rapid precipitation and protein extraction, was achieved with 0.1% formic acid aqueous solution-acetonitrile for the mobile phase. A Xevo TQ-S triple quadrupole tandem mass spectrometer, under the selective reaction monitoring (SRM) mode, for the determination of the concentrations in the positive ion mode. The mass transfer pairs of tropifexor and oprozomib (ISTD) were m/z 604.08 ⟶ 228.03 and m/z 533.18 ⟶ 199.01, respectively. The profile displayed well linearity with calibration curves for tropifexor and oprozomib (ISTD) ranging from 1.0 to 200 ng/mL. In parallel, the lower limit of quantification (LLOQ) value for tropifexor could be measured with the aid of this novel technique at 1.0 ng/mL. In addition, the scope of intraday and interday for analyte accuracy was between -4.86% and 1.16%, with a precision of <7.31%. The recoveries of the analytes were >88.13% and were free of significant matrix effects. The stability met the requirements for the quantification of plasma samples under various conditions. Finally, the pharmacokinetic profile of tropifexor in beagle dog plasma following oral administration of 0.33 mg/kg tropifexor was determined by using the method facilitated in this work.
期刊介绍:
Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical.
Subject areas include (but are by no means limited to):
Separation
Spectroscopy
Mass spectrometry
Chromatography
Analytical Sample Preparation
Electrochemical analysis
Hyphenated techniques
Data processing
As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.