Javier Gene, Juan C Colado, Alejandro Perez-Castilla, Amador García-Ramos, Beatriz Redondo, Raimundo Jiménez, Jesús Vera, Fernando Martín-Rivera
{"title":"抗阻训练联合血流限制对急性眼压的影响。","authors":"Javier Gene, Juan C Colado, Alejandro Perez-Castilla, Amador García-Ramos, Beatriz Redondo, Raimundo Jiménez, Jesús Vera, Fernando Martín-Rivera","doi":"10.1080/02701367.2022.2119197","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective</b>: To determine the effect of blood flow restriction (BFR) applied to the legs at different pressures (40% and 60%) on intraocular pressure (IOP) during the execution of ten repetitions maximum (10RM) in the half-squat exercise. <b>Methods</b>: Quasi-experimental, prospective study with 17 healthy physically active subjects (9 males and 8 females; 24.1 ± 4.2 years). Two sessions were conducted. The 10RM load was determined in the first session. The second session consisted of 10RM under three BFR conditions (no-BFR, 40%-BFR, and 60%-BFR) that were applied in random order. IOP was measured before each condition, immediately after each repetition, and after 1 minute of passive recovery. A two-way repeated-measures ANOVA (restriction type [no-BFR, 40%-BFR, and 60%-BFR] x measurement point [basal, repetitions 1-10, and recovery]) was applied on the IOP measurements. <b>Results</b>: A significant main effect of the BFR condition (p = .022, ƞp<sup>2</sup> = 0.21) was observed due to the significantly higher mean IOP values for the 60%-BFR (19.0 ± 0.7 mmHg) compared to the no-BFR (18.0 ± 0.8 mmHg; p = .048, <i>d<sub>unb</sub> </i>= 1.30). Non-significant differences with a large effect size were reached between 60%-BFR and 40%-BFR (18.1 ± 0.8 mmHg; p = .081, <i>d<sub>unb</sub> </i>= 1.16) and between no-BFR and 40%-BFR (p = .686, <i>d<sub>unb</sub> </i>= 0.18). IOP increased approximately 3-4 mmHg from baseline to the last repetition. <b>Conclusions</b>: Low-pressure BFR (40%-BFR) in combination with moderate-load (10RM load) resistance exercise could be an effective and safe strength training strategy while avoiding IOP peaks associated with heavy-load resistance exercises. These findings incorporate novel insights into the most effective exercise strategies in individuals who need to maintain stable IOP levels (e.g., glaucoma patients).</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"1110-1116"},"PeriodicalIF":16.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute Intraocular Pressure Responses to Resistance Training in Combination With Blood Flow Restriction.\",\"authors\":\"Javier Gene, Juan C Colado, Alejandro Perez-Castilla, Amador García-Ramos, Beatriz Redondo, Raimundo Jiménez, Jesús Vera, Fernando Martín-Rivera\",\"doi\":\"10.1080/02701367.2022.2119197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective</b>: To determine the effect of blood flow restriction (BFR) applied to the legs at different pressures (40% and 60%) on intraocular pressure (IOP) during the execution of ten repetitions maximum (10RM) in the half-squat exercise. <b>Methods</b>: Quasi-experimental, prospective study with 17 healthy physically active subjects (9 males and 8 females; 24.1 ± 4.2 years). Two sessions were conducted. The 10RM load was determined in the first session. The second session consisted of 10RM under three BFR conditions (no-BFR, 40%-BFR, and 60%-BFR) that were applied in random order. IOP was measured before each condition, immediately after each repetition, and after 1 minute of passive recovery. A two-way repeated-measures ANOVA (restriction type [no-BFR, 40%-BFR, and 60%-BFR] x measurement point [basal, repetitions 1-10, and recovery]) was applied on the IOP measurements. <b>Results</b>: A significant main effect of the BFR condition (p = .022, ƞp<sup>2</sup> = 0.21) was observed due to the significantly higher mean IOP values for the 60%-BFR (19.0 ± 0.7 mmHg) compared to the no-BFR (18.0 ± 0.8 mmHg; p = .048, <i>d<sub>unb</sub> </i>= 1.30). Non-significant differences with a large effect size were reached between 60%-BFR and 40%-BFR (18.1 ± 0.8 mmHg; p = .081, <i>d<sub>unb</sub> </i>= 1.16) and between no-BFR and 40%-BFR (p = .686, <i>d<sub>unb</sub> </i>= 0.18). IOP increased approximately 3-4 mmHg from baseline to the last repetition. <b>Conclusions</b>: Low-pressure BFR (40%-BFR) in combination with moderate-load (10RM load) resistance exercise could be an effective and safe strength training strategy while avoiding IOP peaks associated with heavy-load resistance exercises. These findings incorporate novel insights into the most effective exercise strategies in individuals who need to maintain stable IOP levels (e.g., glaucoma patients).</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" \",\"pages\":\"1110-1116\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02701367.2022.2119197\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02701367.2022.2119197","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Acute Intraocular Pressure Responses to Resistance Training in Combination With Blood Flow Restriction.
Objective: To determine the effect of blood flow restriction (BFR) applied to the legs at different pressures (40% and 60%) on intraocular pressure (IOP) during the execution of ten repetitions maximum (10RM) in the half-squat exercise. Methods: Quasi-experimental, prospective study with 17 healthy physically active subjects (9 males and 8 females; 24.1 ± 4.2 years). Two sessions were conducted. The 10RM load was determined in the first session. The second session consisted of 10RM under three BFR conditions (no-BFR, 40%-BFR, and 60%-BFR) that were applied in random order. IOP was measured before each condition, immediately after each repetition, and after 1 minute of passive recovery. A two-way repeated-measures ANOVA (restriction type [no-BFR, 40%-BFR, and 60%-BFR] x measurement point [basal, repetitions 1-10, and recovery]) was applied on the IOP measurements. Results: A significant main effect of the BFR condition (p = .022, ƞp2 = 0.21) was observed due to the significantly higher mean IOP values for the 60%-BFR (19.0 ± 0.7 mmHg) compared to the no-BFR (18.0 ± 0.8 mmHg; p = .048, dunb= 1.30). Non-significant differences with a large effect size were reached between 60%-BFR and 40%-BFR (18.1 ± 0.8 mmHg; p = .081, dunb= 1.16) and between no-BFR and 40%-BFR (p = .686, dunb= 0.18). IOP increased approximately 3-4 mmHg from baseline to the last repetition. Conclusions: Low-pressure BFR (40%-BFR) in combination with moderate-load (10RM load) resistance exercise could be an effective and safe strength training strategy while avoiding IOP peaks associated with heavy-load resistance exercises. These findings incorporate novel insights into the most effective exercise strategies in individuals who need to maintain stable IOP levels (e.g., glaucoma patients).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.