Shervin Dehghani, Michael Sommersperger, Junjie Yang, Mehrdad Salehi, Benjamin Busam, Kai Huang, Peter Gehlbach, Iulian Iordachita, Nassir Navab, M Ali Nasseri
{"title":"ColibriDoc:眼-手自动套管针对接系统。","authors":"Shervin Dehghani, Michael Sommersperger, Junjie Yang, Mehrdad Salehi, Benjamin Busam, Kai Huang, Peter Gehlbach, Iulian Iordachita, Nassir Navab, M Ali Nasseri","doi":"10.1109/icra46639.2022.9811364","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal surgery is a complex medical procedure that requires exceptional expertise and dexterity. For this purpose, several robotic platforms are currently under development to enable or improve the outcome of microsurgical tasks. Since the control of such robots is often designed for navigation inside the eye in proximity to the retina, successful trocar docking and insertion of the instrument into the eye represents an additional cognitive effort, and is therefore one of the open challenges in robotic retinal surgery. For this purpose, we present a platform for autonomous trocar docking that combines computer vision and a robotic setup. Inspired by the Cuban Colibri (hummingbird) aligning its beak to a flower using only vision, we mount a camera onto the endeffector of a robotic system. By estimating the position and pose of the trocar, the robot is able to autonomously align and navigate the instrument towards the Trocar Entry Point (TEP) and finally perform the insertion. Our experiments show that the proposed method is able to accurately estimate the position and pose of the trocar and achieve repeatable autonomous docking. The aim of this work is to reduce the complexity of the robotic setup prior to the surgical task and therefore, increase the intuitiveness of the system integration into clinical workflow.</p>","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":" ","pages":"7717-7723"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484558/pdf/nihms-1836539.pdf","citationCount":"3","resultStr":"{\"title\":\"ColibriDoc: An Eye-in-Hand Autonomous Trocar Docking System.\",\"authors\":\"Shervin Dehghani, Michael Sommersperger, Junjie Yang, Mehrdad Salehi, Benjamin Busam, Kai Huang, Peter Gehlbach, Iulian Iordachita, Nassir Navab, M Ali Nasseri\",\"doi\":\"10.1109/icra46639.2022.9811364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retinal surgery is a complex medical procedure that requires exceptional expertise and dexterity. For this purpose, several robotic platforms are currently under development to enable or improve the outcome of microsurgical tasks. Since the control of such robots is often designed for navigation inside the eye in proximity to the retina, successful trocar docking and insertion of the instrument into the eye represents an additional cognitive effort, and is therefore one of the open challenges in robotic retinal surgery. For this purpose, we present a platform for autonomous trocar docking that combines computer vision and a robotic setup. Inspired by the Cuban Colibri (hummingbird) aligning its beak to a flower using only vision, we mount a camera onto the endeffector of a robotic system. By estimating the position and pose of the trocar, the robot is able to autonomously align and navigate the instrument towards the Trocar Entry Point (TEP) and finally perform the insertion. Our experiments show that the proposed method is able to accurately estimate the position and pose of the trocar and achieve repeatable autonomous docking. The aim of this work is to reduce the complexity of the robotic setup prior to the surgical task and therefore, increase the intuitiveness of the system integration into clinical workflow.</p>\",\"PeriodicalId\":73286,\"journal\":{\"name\":\"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation\",\"volume\":\" \",\"pages\":\"7717-7723\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484558/pdf/nihms-1836539.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icra46639.2022.9811364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
ColibriDoc: An Eye-in-Hand Autonomous Trocar Docking System.
Retinal surgery is a complex medical procedure that requires exceptional expertise and dexterity. For this purpose, several robotic platforms are currently under development to enable or improve the outcome of microsurgical tasks. Since the control of such robots is often designed for navigation inside the eye in proximity to the retina, successful trocar docking and insertion of the instrument into the eye represents an additional cognitive effort, and is therefore one of the open challenges in robotic retinal surgery. For this purpose, we present a platform for autonomous trocar docking that combines computer vision and a robotic setup. Inspired by the Cuban Colibri (hummingbird) aligning its beak to a flower using only vision, we mount a camera onto the endeffector of a robotic system. By estimating the position and pose of the trocar, the robot is able to autonomously align and navigate the instrument towards the Trocar Entry Point (TEP) and finally perform the insertion. Our experiments show that the proposed method is able to accurately estimate the position and pose of the trocar and achieve repeatable autonomous docking. The aim of this work is to reduce the complexity of the robotic setup prior to the surgical task and therefore, increase the intuitiveness of the system integration into clinical workflow.