Anna Mottola, Roberta Piredda, Gaetano Catanese, Federica Giorelli, Gloria Cagnazzo, Giuseppina Ciccarese, Angela Dambrosio, Nicoletta Cristiana Quaglia, Angela Di Pinto
{"title":"用于鱼汉堡中物种鉴定的DNA元条形码。","authors":"Anna Mottola, Roberta Piredda, Gaetano Catanese, Federica Giorelli, Gloria Cagnazzo, Giuseppina Ciccarese, Angela Dambrosio, Nicoletta Cristiana Quaglia, Angela Di Pinto","doi":"10.4081/ijfs.2022.10412","DOIUrl":null,"url":null,"abstract":"<p><p>The absence of morphological identification characters, together with the complexity of the fish supply chain make processed seafood vulnerable to cases of species substitution. Therefore, the authentication and the traceability of such products play a strategic role in ensuring quality and safety. The aim of the present study was to detect species used in the production of multi-species fish burgers and to evaluate mislabelling rates, using a DNA metabarcoding approach by sequencing a fragment of the 16S rRNA mitochondrial gene. The study highlighted the presence of 16 marine and 2 mammalian taxa with an overall mislabelling rate of 80%, including cases of species substitution, the undeclared presence of molluscs and of taxa whose use is not permitted by current Italian legislation. The presence of swine DNA as well as the inclusion of undeclared taxa potentially causing allergies raise concerns regarding consumer safety and protection regarding ethical or religious issues. Overall, the study shows that the application of DNA metabarcoding is a promising approach for successfully enforcing traceability systems targeting multi-species processed food and for supporting control activities, as a guarantee of an innovative food safety management system.</p>","PeriodicalId":14508,"journal":{"name":"Italian Journal of Food Safety","volume":" ","pages":"10412"},"PeriodicalIF":1.8000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0f/79/ijfs-11-3-10412.PMC9472284.pdf","citationCount":"2","resultStr":"{\"title\":\"DNA metabarcoding for identification of species used in fish burgers.\",\"authors\":\"Anna Mottola, Roberta Piredda, Gaetano Catanese, Federica Giorelli, Gloria Cagnazzo, Giuseppina Ciccarese, Angela Dambrosio, Nicoletta Cristiana Quaglia, Angela Di Pinto\",\"doi\":\"10.4081/ijfs.2022.10412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The absence of morphological identification characters, together with the complexity of the fish supply chain make processed seafood vulnerable to cases of species substitution. Therefore, the authentication and the traceability of such products play a strategic role in ensuring quality and safety. The aim of the present study was to detect species used in the production of multi-species fish burgers and to evaluate mislabelling rates, using a DNA metabarcoding approach by sequencing a fragment of the 16S rRNA mitochondrial gene. The study highlighted the presence of 16 marine and 2 mammalian taxa with an overall mislabelling rate of 80%, including cases of species substitution, the undeclared presence of molluscs and of taxa whose use is not permitted by current Italian legislation. The presence of swine DNA as well as the inclusion of undeclared taxa potentially causing allergies raise concerns regarding consumer safety and protection regarding ethical or religious issues. Overall, the study shows that the application of DNA metabarcoding is a promising approach for successfully enforcing traceability systems targeting multi-species processed food and for supporting control activities, as a guarantee of an innovative food safety management system.</p>\",\"PeriodicalId\":14508,\"journal\":{\"name\":\"Italian Journal of Food Safety\",\"volume\":\" \",\"pages\":\"10412\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0f/79/ijfs-11-3-10412.PMC9472284.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Food Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4081/ijfs.2022.10412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Food Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/ijfs.2022.10412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
DNA metabarcoding for identification of species used in fish burgers.
The absence of morphological identification characters, together with the complexity of the fish supply chain make processed seafood vulnerable to cases of species substitution. Therefore, the authentication and the traceability of such products play a strategic role in ensuring quality and safety. The aim of the present study was to detect species used in the production of multi-species fish burgers and to evaluate mislabelling rates, using a DNA metabarcoding approach by sequencing a fragment of the 16S rRNA mitochondrial gene. The study highlighted the presence of 16 marine and 2 mammalian taxa with an overall mislabelling rate of 80%, including cases of species substitution, the undeclared presence of molluscs and of taxa whose use is not permitted by current Italian legislation. The presence of swine DNA as well as the inclusion of undeclared taxa potentially causing allergies raise concerns regarding consumer safety and protection regarding ethical or religious issues. Overall, the study shows that the application of DNA metabarcoding is a promising approach for successfully enforcing traceability systems targeting multi-species processed food and for supporting control activities, as a guarantee of an innovative food safety management system.
期刊介绍:
The Journal of Food Safety (IJFS) is the official journal of the Italian Association of Veterinary Food Hygienists (AIVI). The Journal addresses veterinary food hygienists, specialists in the food industry and experts offering technical support and advice on food of animal origin. The Journal of Food Safety publishes original research papers concerning food safety and hygiene, animal health, zoonoses and food safety, food safety economics. Reviews, editorials, technical reports, brief notes, conference proceedings, letters to the Editor, book reviews are also welcome. Every article published in the Journal will be peer-reviewed by experts in the field and selected by members of the editorial board. The publication of manuscripts is subject to the approval of the Editor who has knowledge of the field discussed in the manuscript in accordance with the principles of Peer Review; referees will be selected from the Editorial Board or among qualified scientists of the international scientific community. Articles must be written in English and must adhere to the guidelines and details contained in the Instructions to Authors.