非线性Schrödinger方程零解的唯一性

IF 2.4 1区 数学 Q1 MATHEMATICS
Christoph Kehle, João P. G. Ramos
{"title":"非线性Schrödinger方程零解的唯一性","authors":"Christoph Kehle,&nbsp;João P. G. Ramos","doi":"10.1007/s40818-022-00138-1","DOIUrl":null,"url":null,"abstract":"<div><p>We show novel types of uniqueness and rigidity results for Schrödinger equations in either the nonlinear case or in the presence of a complex-valued potential. As our main result we obtain that the trivial solution <span>\\(u=0\\)</span> is the only solution for which the assumptions <span>\\(u(t=0)\\vert _{D}=0, u(t=T)\\vert _{D}=0\\)</span> hold, where <span>\\(D\\subset \\mathbb {R}^d\\)</span> are certain subsets of codimension one. In particular, <i>D</i> is <i>discrete</i> for dimension <span>\\(d=1\\)</span>. Our main theorem can be seen as a nonlinear analogue of discrete Fourier uniqueness pairs such as the celebrated Radchenko–Viazovska formula in [21], and the uniqueness result of the second author and M. Sousa for powers of integers [22]. As an additional application, we deduce rigidity results for solutions to some semilinear elliptic equations from their zeros.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"8 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-022-00138-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of Solutions to Nonlinear Schrödinger Equations from their Zeros\",\"authors\":\"Christoph Kehle,&nbsp;João P. G. Ramos\",\"doi\":\"10.1007/s40818-022-00138-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show novel types of uniqueness and rigidity results for Schrödinger equations in either the nonlinear case or in the presence of a complex-valued potential. As our main result we obtain that the trivial solution <span>\\\\(u=0\\\\)</span> is the only solution for which the assumptions <span>\\\\(u(t=0)\\\\vert _{D}=0, u(t=T)\\\\vert _{D}=0\\\\)</span> hold, where <span>\\\\(D\\\\subset \\\\mathbb {R}^d\\\\)</span> are certain subsets of codimension one. In particular, <i>D</i> is <i>discrete</i> for dimension <span>\\\\(d=1\\\\)</span>. Our main theorem can be seen as a nonlinear analogue of discrete Fourier uniqueness pairs such as the celebrated Radchenko–Viazovska formula in [21], and the uniqueness result of the second author and M. Sousa for powers of integers [22]. As an additional application, we deduce rigidity results for solutions to some semilinear elliptic equations from their zeros.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40818-022-00138-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-022-00138-1\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-022-00138-1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了Schrödinger方程在非线性情况下或在复值势存在下的新类型的唯一性和刚度结果。作为我们的主要结果,我们得到平凡解\(u=0\)是唯一一个假设\(u(t=0)\vert_{D}=0,u(t=t)\vert-{D}=0)成立的解,其中\(D\subet \mathbb{R}^D\)是余维1的某些子集。特别地,D对于维度\(D=1\)是离散的。我们的主要定理可以被视为离散傅立叶唯一性对的非线性模拟,如[21]中著名的Radchenko–Viazovska公式,以及第二作者和M.Sousa对整数幂的唯一性结果[22]。作为一个额外的应用,我们从一些半线性椭圆型方程的零出发,推导了它们解的刚度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness of Solutions to Nonlinear Schrödinger Equations from their Zeros

We show novel types of uniqueness and rigidity results for Schrödinger equations in either the nonlinear case or in the presence of a complex-valued potential. As our main result we obtain that the trivial solution \(u=0\) is the only solution for which the assumptions \(u(t=0)\vert _{D}=0, u(t=T)\vert _{D}=0\) hold, where \(D\subset \mathbb {R}^d\) are certain subsets of codimension one. In particular, D is discrete for dimension \(d=1\). Our main theorem can be seen as a nonlinear analogue of discrete Fourier uniqueness pairs such as the celebrated Radchenko–Viazovska formula in [21], and the uniqueness result of the second author and M. Sousa for powers of integers [22]. As an additional application, we deduce rigidity results for solutions to some semilinear elliptic equations from their zeros.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信