{"title":"胶质母细胞瘤中 M2 巨噬细胞的形态学分析:巨噬细胞胞外陷阱 (MET) 的参与。","authors":"Ayano Michiba, Kazuya Shiogama, Tetsuya Tsukamoto, Masaya Hirayama, Seiji Yamada, Masato Abe","doi":"10.1267/ahc.22-00018","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the malignancy of brain tumors. Recently, macrophage extracellular traps (METs), which change into a network, have been reported as a unique form of macrophage cell death. In this study, immunohistochemical analysis of macrophages in METs in human glioblastoma was performed. To distinguish between M1 and M2 macrophages, multiple immunostainings with Iba1 combined with CD163 or CD204 were performed. M2 macrophages were present in small amounts in normal and borderline areas but showed an increasing trend as they shifted to tumor areas, and most of them were the activated- or phagocytic-type. We also successfully detected METs coexisting with fibrin and lactoferrin near the border between the tumor and necrotic area. M2 macrophages not only suppressed inflammation but also were involved in the formation of METs. This study found that M2 macrophages play various roles in unstable situations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/19/5c/ahc-055-111.PMC9427541.pdf","citationCount":"0","resultStr":"{\"title\":\"Morphologic Analysis of M2 Macrophage in Glioblastoma: Involvement of Macrophage Extracellular Traps (METs).\",\"authors\":\"Ayano Michiba, Kazuya Shiogama, Tetsuya Tsukamoto, Masaya Hirayama, Seiji Yamada, Masato Abe\",\"doi\":\"10.1267/ahc.22-00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the malignancy of brain tumors. Recently, macrophage extracellular traps (METs), which change into a network, have been reported as a unique form of macrophage cell death. In this study, immunohistochemical analysis of macrophages in METs in human glioblastoma was performed. To distinguish between M1 and M2 macrophages, multiple immunostainings with Iba1 combined with CD163 or CD204 were performed. M2 macrophages were present in small amounts in normal and borderline areas but showed an increasing trend as they shifted to tumor areas, and most of them were the activated- or phagocytic-type. We also successfully detected METs coexisting with fibrin and lactoferrin near the border between the tumor and necrotic area. M2 macrophages not only suppressed inflammation but also were involved in the formation of METs. This study found that M2 macrophages play various roles in unstable situations.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/19/5c/ahc-055-111.PMC9427541.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1267/ahc.22-00018\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1267/ahc.22-00018","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Morphologic Analysis of M2 Macrophage in Glioblastoma: Involvement of Macrophage Extracellular Traps (METs).
Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the malignancy of brain tumors. Recently, macrophage extracellular traps (METs), which change into a network, have been reported as a unique form of macrophage cell death. In this study, immunohistochemical analysis of macrophages in METs in human glioblastoma was performed. To distinguish between M1 and M2 macrophages, multiple immunostainings with Iba1 combined with CD163 or CD204 were performed. M2 macrophages were present in small amounts in normal and borderline areas but showed an increasing trend as they shifted to tumor areas, and most of them were the activated- or phagocytic-type. We also successfully detected METs coexisting with fibrin and lactoferrin near the border between the tumor and necrotic area. M2 macrophages not only suppressed inflammation but also were involved in the formation of METs. This study found that M2 macrophages play various roles in unstable situations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.