{"title":"通过视频帧和光流运动模板使用 3D-CNN 和 2D-CNN 的双流融合模型进行手势识别。","authors":"Debajit Sarma, V Kavyasree, M K Bhuyan","doi":"10.1007/s11334-022-00477-z","DOIUrl":null,"url":null,"abstract":"<p><p>Hand gestures are useful tools for many applications in the human-computer interaction community. Here, the objective is to track the movement of the hand irrespective of the shape, size and color of the hand. And, for this, a motion template guided by optical flow (OFMT) is proposed. OFMT is a compact representation of the motion information of a gesture encoded into a single image. Recently, deep networks have shown impressive improvements as compared to conventional hand-crafted feature-based techniques. Moreover, it is seen that the use of different streams with informative input data helps to increase the recognition performance. This work basically proposes a two-stream fusion model for hand gesture recognition. The two-stream network consists of two layers-a 3D convolutional neural network (C3D) that takes gesture videos as input and a 2D-CNN that takes OFMT images as input. C3D has shown its efficiency in capturing spatiotemporal information of a video, whereas OFMT helps to eliminate irrelevant gestures providing additional motion information. Though each stream can work independently, they are combined with a fusion scheme to boost the recognition results. We have shown the efficiency of the proposed two-stream network on two databases.</p>","PeriodicalId":44465,"journal":{"name":"Innovations in Systems and Software Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420673/pdf/","citationCount":"0","resultStr":"{\"title\":\"Two-stream fusion model using 3D-CNN and 2D-CNN via video-frames and optical flow motion templates for hand gesture recognition.\",\"authors\":\"Debajit Sarma, V Kavyasree, M K Bhuyan\",\"doi\":\"10.1007/s11334-022-00477-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hand gestures are useful tools for many applications in the human-computer interaction community. Here, the objective is to track the movement of the hand irrespective of the shape, size and color of the hand. And, for this, a motion template guided by optical flow (OFMT) is proposed. OFMT is a compact representation of the motion information of a gesture encoded into a single image. Recently, deep networks have shown impressive improvements as compared to conventional hand-crafted feature-based techniques. Moreover, it is seen that the use of different streams with informative input data helps to increase the recognition performance. This work basically proposes a two-stream fusion model for hand gesture recognition. The two-stream network consists of two layers-a 3D convolutional neural network (C3D) that takes gesture videos as input and a 2D-CNN that takes OFMT images as input. C3D has shown its efficiency in capturing spatiotemporal information of a video, whereas OFMT helps to eliminate irrelevant gestures providing additional motion information. Though each stream can work independently, they are combined with a fusion scheme to boost the recognition results. We have shown the efficiency of the proposed two-stream network on two databases.</p>\",\"PeriodicalId\":44465,\"journal\":{\"name\":\"Innovations in Systems and Software Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420673/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovations in Systems and Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11334-022-00477-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Systems and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11334-022-00477-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Two-stream fusion model using 3D-CNN and 2D-CNN via video-frames and optical flow motion templates for hand gesture recognition.
Hand gestures are useful tools for many applications in the human-computer interaction community. Here, the objective is to track the movement of the hand irrespective of the shape, size and color of the hand. And, for this, a motion template guided by optical flow (OFMT) is proposed. OFMT is a compact representation of the motion information of a gesture encoded into a single image. Recently, deep networks have shown impressive improvements as compared to conventional hand-crafted feature-based techniques. Moreover, it is seen that the use of different streams with informative input data helps to increase the recognition performance. This work basically proposes a two-stream fusion model for hand gesture recognition. The two-stream network consists of two layers-a 3D convolutional neural network (C3D) that takes gesture videos as input and a 2D-CNN that takes OFMT images as input. C3D has shown its efficiency in capturing spatiotemporal information of a video, whereas OFMT helps to eliminate irrelevant gestures providing additional motion information. Though each stream can work independently, they are combined with a fusion scheme to boost the recognition results. We have shown the efficiency of the proposed two-stream network on two databases.
期刊介绍:
Innovations in Systems and Software Engineering: A NASA Journal addresses issues and innovations in Systems Engineering, Systems Integration, Software Engineering, Software Development and other related areas that are specifically of interest to NASA. The journal includes peer-reviewed world-class technical papers on topics of research, development and practice related to NASA''s missions and projects, topics of interest to NASA for future use, and topics describing problem areas for NASA together with potential solutions. Papers that do not address issues related to NASA are of course very welcome, provided that they address topics that NASA might like to consider for the future. Papers are solicited from NASA and government employees, contractors, NASA-supported academic and industrial partners, and non-NASA-supported academics and industrialists both in the USA and worldwide. The journal includes updates on NASA innovations, articles on NASA initiatives, papers looking at educational activities, and a State-of-the-Art section that gives an overview of specific topic areas in a comprehensive format written by an expert in the field.