Yuting Su, Yao Peng, Jie Ren, Shangjie Wu, Si Lei, Fei Peng, Zhina Sun, Xiuqing He, Juan Li, Shunxiang Li
{"title":"小檗皮多组分定量分析的单标记-指纹图谱和化学计量学相结合方法。","authors":"Yuting Su, Yao Peng, Jie Ren, Shangjie Wu, Si Lei, Fei Peng, Zhina Sun, Xiuqing He, Juan Li, Shunxiang Li","doi":"10.1155/2022/8042631","DOIUrl":null,"url":null,"abstract":"<p><p>Berberidis Cortex is rich in alkaloids, and many of them have antibacterial, anti-inflammatory, and hypoglycemic activities. However, few research studies have focused on the quantitative analysis of multiple components from Berberidis Cortex. In this study, a new quality evaluation strategy for Berberidis Cortex was developed and validated by high-performance liquid chromatography (HPLC), which involved single marker, fingerprint, and stoichiometric methods. Using berberine hydrochloride as an internal reference, the relative correction factors of palmatine hydrochloride, magnoline, and jatrorrhizine hydrochloride were 2.4537, 0.9783, and 1.0035, respectively, and their durabilities were also well performed. In addition, both methods mentioned above were used to compare the mass fractions of four isoquinoline alkaloids in ten batches of Berberidis Cortex from different origins. These results indicated that the approach applied in this study was accurate and feasible. The fingerprints of these ten batches of Berberidis Cortex were established, and eleven components were identified with the similarity greater than 0.993. Both cluster and principal component analysis were carried out based on the peak area of these components, the results demonstrated that these ten batches of Berberidis Cortex were divided into two groups and the distribution of the medicinal material was basically consistent. Therefore, quantitative analysis of multicomponents by single marker (QAMS) can be widely used in the quality control of Berberidis Cortex as theoretical basis.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436626/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative Analysis of Berberidis Cortex via Quantitative Analysis of Multicomponents by Single Marker (QAMS) Combined with Fingerprint and Chemometrics Methods.\",\"authors\":\"Yuting Su, Yao Peng, Jie Ren, Shangjie Wu, Si Lei, Fei Peng, Zhina Sun, Xiuqing He, Juan Li, Shunxiang Li\",\"doi\":\"10.1155/2022/8042631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Berberidis Cortex is rich in alkaloids, and many of them have antibacterial, anti-inflammatory, and hypoglycemic activities. However, few research studies have focused on the quantitative analysis of multiple components from Berberidis Cortex. In this study, a new quality evaluation strategy for Berberidis Cortex was developed and validated by high-performance liquid chromatography (HPLC), which involved single marker, fingerprint, and stoichiometric methods. Using berberine hydrochloride as an internal reference, the relative correction factors of palmatine hydrochloride, magnoline, and jatrorrhizine hydrochloride were 2.4537, 0.9783, and 1.0035, respectively, and their durabilities were also well performed. In addition, both methods mentioned above were used to compare the mass fractions of four isoquinoline alkaloids in ten batches of Berberidis Cortex from different origins. These results indicated that the approach applied in this study was accurate and feasible. The fingerprints of these ten batches of Berberidis Cortex were established, and eleven components were identified with the similarity greater than 0.993. Both cluster and principal component analysis were carried out based on the peak area of these components, the results demonstrated that these ten batches of Berberidis Cortex were divided into two groups and the distribution of the medicinal material was basically consistent. Therefore, quantitative analysis of multicomponents by single marker (QAMS) can be widely used in the quality control of Berberidis Cortex as theoretical basis.</p>\",\"PeriodicalId\":14974,\"journal\":{\"name\":\"Journal of Analytical Methods in Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436626/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Methods in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8042631\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/8042631","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Quantitative Analysis of Berberidis Cortex via Quantitative Analysis of Multicomponents by Single Marker (QAMS) Combined with Fingerprint and Chemometrics Methods.
Berberidis Cortex is rich in alkaloids, and many of them have antibacterial, anti-inflammatory, and hypoglycemic activities. However, few research studies have focused on the quantitative analysis of multiple components from Berberidis Cortex. In this study, a new quality evaluation strategy for Berberidis Cortex was developed and validated by high-performance liquid chromatography (HPLC), which involved single marker, fingerprint, and stoichiometric methods. Using berberine hydrochloride as an internal reference, the relative correction factors of palmatine hydrochloride, magnoline, and jatrorrhizine hydrochloride were 2.4537, 0.9783, and 1.0035, respectively, and their durabilities were also well performed. In addition, both methods mentioned above were used to compare the mass fractions of four isoquinoline alkaloids in ten batches of Berberidis Cortex from different origins. These results indicated that the approach applied in this study was accurate and feasible. The fingerprints of these ten batches of Berberidis Cortex were established, and eleven components were identified with the similarity greater than 0.993. Both cluster and principal component analysis were carried out based on the peak area of these components, the results demonstrated that these ten batches of Berberidis Cortex were divided into two groups and the distribution of the medicinal material was basically consistent. Therefore, quantitative analysis of multicomponents by single marker (QAMS) can be widely used in the quality control of Berberidis Cortex as theoretical basis.
期刊介绍:
Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical.
Subject areas include (but are by no means limited to):
Separation
Spectroscopy
Mass spectrometry
Chromatography
Analytical Sample Preparation
Electrochemical analysis
Hyphenated techniques
Data processing
As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.