{"title":"在改变的听觉反馈下,不同鼻音和前向元音发音句子中的长期平均频谱和鼻音加速度。","authors":"Shao-Hsuan Lee, Guo-She Lee","doi":"10.1016/j.jvoice.2022.07.026","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives and background: </strong>To investigate whether voice focus adjustments can alter the audio-vocal feedback and consequently modulate speech/voice motor control. Speaking with a forward-focused voice was expected to enhance audio-vocal feedback and thus decrease the variability of vocal fundamental frequency (F0).</p><p><strong>Materials and method: </strong>Twenty-two healthy, untrained adults (10 males and 12 females) were requested to sustain vowel /a/ with their natural focus and a forward focus and to naturally read the nasal, oral, and mixed oral-nasal sentences in normal noise-masked auditory conditions. Meanwhile, a miniature accelerometer was externally attached on the noise to detect the nasal vibrations during vocalization. Audio recordings were made and analyzed using the long-term average spectrum (LTAS) and power spectral analysis of F0.</p><p><strong>Results: </strong>Compared with naturally-focused vowel production and oral sentences, forward-focused vowel productions and nasal sentences both showed significant increases in nasal accelerometric amplitude and the spectral power within the range of 200∼300 Hz, and significantly decreased the F0 variability below 3 Hz, which has been reported to be associated with enhanced auditory feedback in our previous research. The auditory masking not only significantly increased the low-frequency F0 variability, but also significantly decreased the ratio of the spectral power within 200∼300 Hz to the power within 300∼1000 Hz for the vowel and sentence productions. Gender differences were found in the correlations between the degree of nasal coupling and F0 stability as well as in the LTAS characteristics in response to noise.</p><p><strong>Conclusions: </strong>Variations in nasal-oral acoustic coupling not only change the formant features of speech signals, but involuntarily influence the auditory feedback control of vocal fold vibrations. Speakers tend to show improved F0 stability in response to a forward-focused voice adjustment.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"25-36"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term Average Spectrum and Nasal Accelerometry in Sentences of Differing Nasality and Forward-Focused Vowel Productions Under Altered Auditory Feedback.\",\"authors\":\"Shao-Hsuan Lee, Guo-She Lee\",\"doi\":\"10.1016/j.jvoice.2022.07.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives and background: </strong>To investigate whether voice focus adjustments can alter the audio-vocal feedback and consequently modulate speech/voice motor control. Speaking with a forward-focused voice was expected to enhance audio-vocal feedback and thus decrease the variability of vocal fundamental frequency (F0).</p><p><strong>Materials and method: </strong>Twenty-two healthy, untrained adults (10 males and 12 females) were requested to sustain vowel /a/ with their natural focus and a forward focus and to naturally read the nasal, oral, and mixed oral-nasal sentences in normal noise-masked auditory conditions. Meanwhile, a miniature accelerometer was externally attached on the noise to detect the nasal vibrations during vocalization. Audio recordings were made and analyzed using the long-term average spectrum (LTAS) and power spectral analysis of F0.</p><p><strong>Results: </strong>Compared with naturally-focused vowel production and oral sentences, forward-focused vowel productions and nasal sentences both showed significant increases in nasal accelerometric amplitude and the spectral power within the range of 200∼300 Hz, and significantly decreased the F0 variability below 3 Hz, which has been reported to be associated with enhanced auditory feedback in our previous research. The auditory masking not only significantly increased the low-frequency F0 variability, but also significantly decreased the ratio of the spectral power within 200∼300 Hz to the power within 300∼1000 Hz for the vowel and sentence productions. Gender differences were found in the correlations between the degree of nasal coupling and F0 stability as well as in the LTAS characteristics in response to noise.</p><p><strong>Conclusions: </strong>Variations in nasal-oral acoustic coupling not only change the formant features of speech signals, but involuntarily influence the auditory feedback control of vocal fold vibrations. Speakers tend to show improved F0 stability in response to a forward-focused voice adjustment.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"25-36\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jvoice.2022.07.026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jvoice.2022.07.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Long-term Average Spectrum and Nasal Accelerometry in Sentences of Differing Nasality and Forward-Focused Vowel Productions Under Altered Auditory Feedback.
Objectives and background: To investigate whether voice focus adjustments can alter the audio-vocal feedback and consequently modulate speech/voice motor control. Speaking with a forward-focused voice was expected to enhance audio-vocal feedback and thus decrease the variability of vocal fundamental frequency (F0).
Materials and method: Twenty-two healthy, untrained adults (10 males and 12 females) were requested to sustain vowel /a/ with their natural focus and a forward focus and to naturally read the nasal, oral, and mixed oral-nasal sentences in normal noise-masked auditory conditions. Meanwhile, a miniature accelerometer was externally attached on the noise to detect the nasal vibrations during vocalization. Audio recordings were made and analyzed using the long-term average spectrum (LTAS) and power spectral analysis of F0.
Results: Compared with naturally-focused vowel production and oral sentences, forward-focused vowel productions and nasal sentences both showed significant increases in nasal accelerometric amplitude and the spectral power within the range of 200∼300 Hz, and significantly decreased the F0 variability below 3 Hz, which has been reported to be associated with enhanced auditory feedback in our previous research. The auditory masking not only significantly increased the low-frequency F0 variability, but also significantly decreased the ratio of the spectral power within 200∼300 Hz to the power within 300∼1000 Hz for the vowel and sentence productions. Gender differences were found in the correlations between the degree of nasal coupling and F0 stability as well as in the LTAS characteristics in response to noise.
Conclusions: Variations in nasal-oral acoustic coupling not only change the formant features of speech signals, but involuntarily influence the auditory feedback control of vocal fold vibrations. Speakers tend to show improved F0 stability in response to a forward-focused voice adjustment.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.