{"title":"a {N, S}配位桨轮铂(II)配合物的合成、晶体结构及ptp抑制活性","authors":"Shufang Wu, Shaodong Li, Xinyu Liu, Yan-Bo Wu, Liping Lu, Caixia Yuan","doi":"10.1007/s11243-023-00534-x","DOIUrl":null,"url":null,"abstract":"<div><p>A dinuclear platinum(II) complex, [Pt<sub>2</sub>(μ-L)<sub>3</sub>(μ-HL)]·Cl·3H<sub>2</sub>O·DMSO (<b>1</b>, HL = 4-Amino-5-pyridin-4-yl-2,4-dihydro-[1,2,4]triazole-3-thione, DMSO = dimethyl sulfoxide), has been synthesized and characterized. The X-ray crystal structural analysis shows that the complex crystallizes in the triclinic, space group <span>\\(P\\overline{1}\\)</span>. Each Pt(II) atom is four-coordinated with two N atoms and two S atoms from triazole ligands. The two platinum centers of the complex formed a paddle wheel motif with four N atoms and four S atoms from four chelating triazole ligands as bridges. The complex forms a 3D network structure by intermolecular hydrogen bonds and C-H…<i>π</i> interactions. The inhibition of complex <b>1</b> was evaluated against protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TCPTP). It has been found that the complex can both inhibit PTP1B and TCPTP with IC<sub>50</sub> values of 11 and 17 μM, respectively. By comparing with the other platinum complexes, we found that complex <b>1</b> exhibits more effective inhibition to PTP1B and TCPTP than the reported paddle wheel dinuclear platinum(II) complexes and weaker inhibition against the two protein tyrosine phosphatases (PTPs) than the mononuclear platinum(II) complex with Schiff base ligand. It is suggested that both the modification and change of the ligand and the spatial structure of the complex will influence their inhibitory ability against PTPs.</p></div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"48 4","pages":"185 - 193"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11243-023-00534-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Synthesis, crystal structure, and PTPs inhibition activity of a {N, S}-coordinated paddle wheel platinum(II) complex\",\"authors\":\"Shufang Wu, Shaodong Li, Xinyu Liu, Yan-Bo Wu, Liping Lu, Caixia Yuan\",\"doi\":\"10.1007/s11243-023-00534-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A dinuclear platinum(II) complex, [Pt<sub>2</sub>(μ-L)<sub>3</sub>(μ-HL)]·Cl·3H<sub>2</sub>O·DMSO (<b>1</b>, HL = 4-Amino-5-pyridin-4-yl-2,4-dihydro-[1,2,4]triazole-3-thione, DMSO = dimethyl sulfoxide), has been synthesized and characterized. The X-ray crystal structural analysis shows that the complex crystallizes in the triclinic, space group <span>\\\\(P\\\\overline{1}\\\\)</span>. Each Pt(II) atom is four-coordinated with two N atoms and two S atoms from triazole ligands. The two platinum centers of the complex formed a paddle wheel motif with four N atoms and four S atoms from four chelating triazole ligands as bridges. The complex forms a 3D network structure by intermolecular hydrogen bonds and C-H…<i>π</i> interactions. The inhibition of complex <b>1</b> was evaluated against protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TCPTP). It has been found that the complex can both inhibit PTP1B and TCPTP with IC<sub>50</sub> values of 11 and 17 μM, respectively. By comparing with the other platinum complexes, we found that complex <b>1</b> exhibits more effective inhibition to PTP1B and TCPTP than the reported paddle wheel dinuclear platinum(II) complexes and weaker inhibition against the two protein tyrosine phosphatases (PTPs) than the mononuclear platinum(II) complex with Schiff base ligand. It is suggested that both the modification and change of the ligand and the spatial structure of the complex will influence their inhibitory ability against PTPs.</p></div>\",\"PeriodicalId\":803,\"journal\":{\"name\":\"Transition Metal Chemistry\",\"volume\":\"48 4\",\"pages\":\"185 - 193\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11243-023-00534-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transition Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11243-023-00534-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-023-00534-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Synthesis, crystal structure, and PTPs inhibition activity of a {N, S}-coordinated paddle wheel platinum(II) complex
A dinuclear platinum(II) complex, [Pt2(μ-L)3(μ-HL)]·Cl·3H2O·DMSO (1, HL = 4-Amino-5-pyridin-4-yl-2,4-dihydro-[1,2,4]triazole-3-thione, DMSO = dimethyl sulfoxide), has been synthesized and characterized. The X-ray crystal structural analysis shows that the complex crystallizes in the triclinic, space group \(P\overline{1}\). Each Pt(II) atom is four-coordinated with two N atoms and two S atoms from triazole ligands. The two platinum centers of the complex formed a paddle wheel motif with four N atoms and four S atoms from four chelating triazole ligands as bridges. The complex forms a 3D network structure by intermolecular hydrogen bonds and C-H…π interactions. The inhibition of complex 1 was evaluated against protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TCPTP). It has been found that the complex can both inhibit PTP1B and TCPTP with IC50 values of 11 and 17 μM, respectively. By comparing with the other platinum complexes, we found that complex 1 exhibits more effective inhibition to PTP1B and TCPTP than the reported paddle wheel dinuclear platinum(II) complexes and weaker inhibition against the two protein tyrosine phosphatases (PTPs) than the mononuclear platinum(II) complex with Schiff base ligand. It is suggested that both the modification and change of the ligand and the spatial structure of the complex will influence their inhibitory ability against PTPs.
期刊介绍:
Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc.
Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.