{"title":"利用等离子体表面改性增强聚醚醚酮基材料的粘合性","authors":"Canan Akay, Natiga İsrafil, Suat Pat","doi":"10.3290/j.jad.b2838149","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the effects of plasma surface treatments and methyl methacrylate-based adhesives on polyetheretherketone.</p><p><strong>Materials and methods: </strong>One hundred ten polyetheretherketone specimens were fabricated and divided into five pretreatment groups: group ArP, 100% argon plasma; group ArOP, 50% argon + 50% oxygen plasma; group ArNP, 50% argon + 50% nitrogen plasma; group ArONP, 75% argon + 12.5% oxygen + 12.5% nitrogen plasma; group C, control. Atomic force microscopy and scanning electron microscopy were performed after surface treatments. After topographical surface examinations, Visio.link primer (Bredent) (n = 10) was applied to the surface of half of the samples in each group (n = 20) and the veneering resin was polymerized onto the polyetheretherketone. The shear bond strengths were measured using a universal test machine.</p><p><strong>Results: </strong>The mean bond strengths of the Visio.link primer applied to group ArP and group ArONP (13.9 and 13.6 MPa, respectively) were statistically significantly higher than that of group C (9.0 MPa). The average shear bond strength of the Visio.link subgroups was higher than that of the Visio.link subgroups (p > 0.05).</p><p><strong>Conclusions: </strong>The use of a methyl methacrylate-based adhesive (Visiolink) provides bonding between polyetheretherketone-veneering composites. Different plasma treatments without primer application had no significant effect on bonding.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"117-124"},"PeriodicalIF":4.6000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734251/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Adhesive Bonding Properties of Polyetheretherketone-based Materials using Plasma Surface Modifications.\",\"authors\":\"Canan Akay, Natiga İsrafil, Suat Pat\",\"doi\":\"10.3290/j.jad.b2838149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To investigate the effects of plasma surface treatments and methyl methacrylate-based adhesives on polyetheretherketone.</p><p><strong>Materials and methods: </strong>One hundred ten polyetheretherketone specimens were fabricated and divided into five pretreatment groups: group ArP, 100% argon plasma; group ArOP, 50% argon + 50% oxygen plasma; group ArNP, 50% argon + 50% nitrogen plasma; group ArONP, 75% argon + 12.5% oxygen + 12.5% nitrogen plasma; group C, control. Atomic force microscopy and scanning electron microscopy were performed after surface treatments. After topographical surface examinations, Visio.link primer (Bredent) (n = 10) was applied to the surface of half of the samples in each group (n = 20) and the veneering resin was polymerized onto the polyetheretherketone. The shear bond strengths were measured using a universal test machine.</p><p><strong>Results: </strong>The mean bond strengths of the Visio.link primer applied to group ArP and group ArONP (13.9 and 13.6 MPa, respectively) were statistically significantly higher than that of group C (9.0 MPa). The average shear bond strength of the Visio.link subgroups was higher than that of the Visio.link subgroups (p > 0.05).</p><p><strong>Conclusions: </strong>The use of a methyl methacrylate-based adhesive (Visiolink) provides bonding between polyetheretherketone-veneering composites. Different plasma treatments without primer application had no significant effect on bonding.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"117-124\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734251/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3290/j.jad.b2838149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3290/j.jad.b2838149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Enhancement of Adhesive Bonding Properties of Polyetheretherketone-based Materials using Plasma Surface Modifications.
Purpose: To investigate the effects of plasma surface treatments and methyl methacrylate-based adhesives on polyetheretherketone.
Materials and methods: One hundred ten polyetheretherketone specimens were fabricated and divided into five pretreatment groups: group ArP, 100% argon plasma; group ArOP, 50% argon + 50% oxygen plasma; group ArNP, 50% argon + 50% nitrogen plasma; group ArONP, 75% argon + 12.5% oxygen + 12.5% nitrogen plasma; group C, control. Atomic force microscopy and scanning electron microscopy were performed after surface treatments. After topographical surface examinations, Visio.link primer (Bredent) (n = 10) was applied to the surface of half of the samples in each group (n = 20) and the veneering resin was polymerized onto the polyetheretherketone. The shear bond strengths were measured using a universal test machine.
Results: The mean bond strengths of the Visio.link primer applied to group ArP and group ArONP (13.9 and 13.6 MPa, respectively) were statistically significantly higher than that of group C (9.0 MPa). The average shear bond strength of the Visio.link subgroups was higher than that of the Visio.link subgroups (p > 0.05).
Conclusions: The use of a methyl methacrylate-based adhesive (Visiolink) provides bonding between polyetheretherketone-veneering composites. Different plasma treatments without primer application had no significant effect on bonding.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.