{"title":"基于氮离子稳定性的局部QSAR模型支持ICH M7专家对伯芳烃胺致突变性的评审。","authors":"Ayaka Furukawa, Satoshi Ono, Katsuya Yamada, Nao Torimoto, Mahoko Asayama, Shigeharu Muto","doi":"10.1186/s41021-022-00238-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aromatic amines, often used as intermediates for pharmaceutical synthesis, may be mutagenic and therefore pose a challenge as metabolites or impurities in drug development. However, predicting the mutagenicity of aromatic amines using commercially available, quantitative structure-activity relationship (QSAR) tools is difficult and often requires expert review. In this study, we developed a shareable QSAR tool based on nitrenium ion stability.</p><p><strong>Results: </strong>The evaluation using in-house aromatic amine intermediates revealed that our model has prediction accuracy of aromatic amine mutagenicity comparable to that of commercial QSAR tools. The effect of changing the number and position of substituents on the mutagenicity of aromatic amines was successfully explained by the change in the nitrenium ion stability. Furthermore, case studies showed that our QSAR tool can support the expert review with quantitative indicators.</p><p><strong>Conclusions: </strong>This local QSAR tool will be useful as a quantitative support tool to explain the substituent effects on the mutagenicity of primary aromatic amines. By further refinement through method sharing and standardization, our tool can support the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) M7 expert review with quantitative indicators.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":" ","pages":"10"},"PeriodicalIF":2.7000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8935809/pdf/","citationCount":"0","resultStr":"{\"title\":\"A local QSAR model based on the stability of nitrenium ions to support the ICH M7 expert review on the mutagenicity of primary aromatic amines.\",\"authors\":\"Ayaka Furukawa, Satoshi Ono, Katsuya Yamada, Nao Torimoto, Mahoko Asayama, Shigeharu Muto\",\"doi\":\"10.1186/s41021-022-00238-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Aromatic amines, often used as intermediates for pharmaceutical synthesis, may be mutagenic and therefore pose a challenge as metabolites or impurities in drug development. However, predicting the mutagenicity of aromatic amines using commercially available, quantitative structure-activity relationship (QSAR) tools is difficult and often requires expert review. In this study, we developed a shareable QSAR tool based on nitrenium ion stability.</p><p><strong>Results: </strong>The evaluation using in-house aromatic amine intermediates revealed that our model has prediction accuracy of aromatic amine mutagenicity comparable to that of commercial QSAR tools. The effect of changing the number and position of substituents on the mutagenicity of aromatic amines was successfully explained by the change in the nitrenium ion stability. Furthermore, case studies showed that our QSAR tool can support the expert review with quantitative indicators.</p><p><strong>Conclusions: </strong>This local QSAR tool will be useful as a quantitative support tool to explain the substituent effects on the mutagenicity of primary aromatic amines. By further refinement through method sharing and standardization, our tool can support the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) M7 expert review with quantitative indicators.</p>\",\"PeriodicalId\":12709,\"journal\":{\"name\":\"Genes and Environment\",\"volume\":\" \",\"pages\":\"10\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8935809/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes and Environment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s41021-022-00238-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Environment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41021-022-00238-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A local QSAR model based on the stability of nitrenium ions to support the ICH M7 expert review on the mutagenicity of primary aromatic amines.
Background: Aromatic amines, often used as intermediates for pharmaceutical synthesis, may be mutagenic and therefore pose a challenge as metabolites or impurities in drug development. However, predicting the mutagenicity of aromatic amines using commercially available, quantitative structure-activity relationship (QSAR) tools is difficult and often requires expert review. In this study, we developed a shareable QSAR tool based on nitrenium ion stability.
Results: The evaluation using in-house aromatic amine intermediates revealed that our model has prediction accuracy of aromatic amine mutagenicity comparable to that of commercial QSAR tools. The effect of changing the number and position of substituents on the mutagenicity of aromatic amines was successfully explained by the change in the nitrenium ion stability. Furthermore, case studies showed that our QSAR tool can support the expert review with quantitative indicators.
Conclusions: This local QSAR tool will be useful as a quantitative support tool to explain the substituent effects on the mutagenicity of primary aromatic amines. By further refinement through method sharing and standardization, our tool can support the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) M7 expert review with quantitative indicators.
期刊介绍:
Genes and Environment is an open access, peer-reviewed journal that aims to accelerate communications among global scientists working in the field of genes and environment. The journal publishes articles across a broad range of topics including environmental mutagenesis and carcinogenesis, environmental genomics and epigenetics, molecular epidemiology, genetic toxicology and regulatory sciences.
Topics published in the journal include, but are not limited to, mutagenesis and anti-mutagenesis in bacteria; genotoxicity in mammalian somatic cells; genotoxicity in germ cells; replication and repair; DNA damage; metabolic activation and inactivation; water and air pollution; ROS, NO and photoactivation; pharmaceuticals and anticancer agents; radiation; endocrine disrupters; indirect mutagenesis; threshold; new techniques for environmental mutagenesis studies; DNA methylation (enzymatic); structure activity relationship; chemoprevention of cancer; regulatory science. Genetic toxicology including risk evaluation for human health, validation studies on testing methods and subjects of guidelines for regulation of chemicals are also within its scope.