{"title":"Meckel软骨细胞脾内移植过程中成骨蛋白的表达:组织化学和免疫组织化学研究。","authors":"Kiyoto Ishizeki, Tadayoshi Kagiya, Naoki Fujiwara, Keishi Otsu, Hidemitsu Harada","doi":"10.1679/aohc.72.1","DOIUrl":null,"url":null,"abstract":"<p><p>Meckel's chondrocytes, derived from the ectomesenchyme, have the potential to transform into other phenotypes. In this study, we transplanted cell pellets of Meckel's chondrocytes into isogenic mouse spleens and analyzed their phenotypic transformation into osteogenic cells using histological and immunohistochemical methods. With the increasing duration of transplantation, chondrocytes were incorporated into splenic tissues and formed a von Kossa-positive calcified matrix containing calcium and phosphoric acid, similar to that of intact bone. Type I, II, and X collagens, and the bone-marker proteins osteocalcin, osteopontin, osteonectin, and bone morphogenetic protein-2 (BMP-2) were immunolocalized in the matrix formed by the transplanted chondrocytes. Osteopontin and osteonectin were detected in the calcified matrix at earlier stages than osteocalcin and BMP-2. Type II collagen was expressed during the first week of transplantation, and type X collagen-positive cells appeared scattered during the initial stage of calcification, these collagens being later replaced by type I collagen formed by osteocyte-like cells. Electron microscopic observations revealed that chondrocytes surrounded by the calcified matrix transformed into spindle-shaped osteocytic cells accompanying the formation of bone-type thick-banded collagen fibrils. These results suggest that phenotypic switching of Meckel's chondrocytes can occur under in vivo conditions at a cellular morphological level.</p>","PeriodicalId":8307,"journal":{"name":"Archives of histology and cytology","volume":"72 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1679/aohc.72.1","citationCount":"10","resultStr":"{\"title\":\"Expression of osteogenic proteins during the intrasplenic transplantation of Meckel's chondrocytes: A histochemical and immunohistochemical study.\",\"authors\":\"Kiyoto Ishizeki, Tadayoshi Kagiya, Naoki Fujiwara, Keishi Otsu, Hidemitsu Harada\",\"doi\":\"10.1679/aohc.72.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Meckel's chondrocytes, derived from the ectomesenchyme, have the potential to transform into other phenotypes. In this study, we transplanted cell pellets of Meckel's chondrocytes into isogenic mouse spleens and analyzed their phenotypic transformation into osteogenic cells using histological and immunohistochemical methods. With the increasing duration of transplantation, chondrocytes were incorporated into splenic tissues and formed a von Kossa-positive calcified matrix containing calcium and phosphoric acid, similar to that of intact bone. Type I, II, and X collagens, and the bone-marker proteins osteocalcin, osteopontin, osteonectin, and bone morphogenetic protein-2 (BMP-2) were immunolocalized in the matrix formed by the transplanted chondrocytes. Osteopontin and osteonectin were detected in the calcified matrix at earlier stages than osteocalcin and BMP-2. Type II collagen was expressed during the first week of transplantation, and type X collagen-positive cells appeared scattered during the initial stage of calcification, these collagens being later replaced by type I collagen formed by osteocyte-like cells. Electron microscopic observations revealed that chondrocytes surrounded by the calcified matrix transformed into spindle-shaped osteocytic cells accompanying the formation of bone-type thick-banded collagen fibrils. These results suggest that phenotypic switching of Meckel's chondrocytes can occur under in vivo conditions at a cellular morphological level.</p>\",\"PeriodicalId\":8307,\"journal\":{\"name\":\"Archives of histology and cytology\",\"volume\":\"72 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1679/aohc.72.1\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of histology and cytology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1679/aohc.72.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of histology and cytology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1679/aohc.72.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Expression of osteogenic proteins during the intrasplenic transplantation of Meckel's chondrocytes: A histochemical and immunohistochemical study.
Meckel's chondrocytes, derived from the ectomesenchyme, have the potential to transform into other phenotypes. In this study, we transplanted cell pellets of Meckel's chondrocytes into isogenic mouse spleens and analyzed their phenotypic transformation into osteogenic cells using histological and immunohistochemical methods. With the increasing duration of transplantation, chondrocytes were incorporated into splenic tissues and formed a von Kossa-positive calcified matrix containing calcium and phosphoric acid, similar to that of intact bone. Type I, II, and X collagens, and the bone-marker proteins osteocalcin, osteopontin, osteonectin, and bone morphogenetic protein-2 (BMP-2) were immunolocalized in the matrix formed by the transplanted chondrocytes. Osteopontin and osteonectin were detected in the calcified matrix at earlier stages than osteocalcin and BMP-2. Type II collagen was expressed during the first week of transplantation, and type X collagen-positive cells appeared scattered during the initial stage of calcification, these collagens being later replaced by type I collagen formed by osteocyte-like cells. Electron microscopic observations revealed that chondrocytes surrounded by the calcified matrix transformed into spindle-shaped osteocytic cells accompanying the formation of bone-type thick-banded collagen fibrils. These results suggest that phenotypic switching of Meckel's chondrocytes can occur under in vivo conditions at a cellular morphological level.
期刊介绍:
The Archives of Histology and Cytology provides prompt publication in English of original works on the histology and histochemistry of man and animals. The articles published are in principle restricted to studies on vertebrates, but investigations using invertebrates may be accepted when the intention and results present issues of common interest to vertebrate researchers. Pathological studies may also be accepted, if the observations and interpretations are deemed to contribute toward increasing knowledge of the normal features of the cells or tissues concerned. This journal will also publish reviews offering evaluations and critical interpretations of recent studies and theories.