Jan Thomas Michaelsen, Sabine Dehnert, Daniela Giustarini, Bibiana Beckmann, Dimitrios Tsikas
{"title":"使用OPA和n -乙酰半胱氨酸乙酯对人红细胞谷胱甘肽形式的高效液相色谱分析:亚硝酸盐诱导谷胱甘肽氧化为GSSG的证据。","authors":"Jan Thomas Michaelsen, Sabine Dehnert, Daniela Giustarini, Bibiana Beckmann, Dimitrios Tsikas","doi":"10.1016/j.jchromb.2009.06.043","DOIUrl":null,"url":null,"abstract":"<p><p>Glutathione exists in biological samples in the reduced form (GSH), as its disulfide (GSSG) and as a mixed disulfide (GSSR) with thiols (RSH). GSH is the most abundant low-molecular-mass thiol and plays important roles as a cofactor and as a main constituent of the intracellular redox status. Due to its own sulfhydryl (SH) group, GSH reacts readily with o-phthaldialdehyde (OPA) to form a highly stable and fluorescent isoindole derivative (GSH-OPA), which allows for sensitive and specific quantitative determination of GSH in biological systems by HPLC with fluorescence (FL) detection. In the present article we report on the utility of the novel, strongly disulfide bond-reducing thiol N-acetyl-cysteine ethyl ester (NACET) for the specific quantitative analysis of GSH and GSSG in the cytosol of red blood cells (RBC) as GSH-OPA derivative with FL (excitation/emission 338/458nm) or UV absorbance (338nm) detection. Unlike in aqueous solution, the derivatization of GSH in RBC cytosol yielded two closely related derivatives in the absence of NACET and only the GSH-OPA derivative in the presence of NACET. The HPLC method was optimized and validated for human RBC and applied to measure GSH and GSSG in RBC of healthy subjects. Basal GSH and GSSG concentrations were determined to be 2340+/-350microM and 11.4+/-3.2microM, respectively, in RBC of 12 healthy young volunteers (aged 23-38 years). The method was also applied to study the effects of nitrite on the glutathione status in intact and lysed human RBC. Nitrite at mM-concentrations caused instantaneous and considerable GSSG formation in lysed but much less pronounced in intact RBC. GSH externally added to lysed RBC inhibited nitrite-induced methemoglobin formation. Our findings suggest that nitric oxide/nitrite-related consumption rate of GSH, and presumably that of NADH and NADPH, could be of the order of 600micromol/day in RBC of healthy subjects.</p>","PeriodicalId":520661,"journal":{"name":"Journal of chromatography. B, Analytical technologies in the biomedical and life sciences","volume":" ","pages":"3405-17"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jchromb.2009.06.043","citationCount":"51","resultStr":"{\"title\":\"HPLC analysis of human erythrocytic glutathione forms using OPA and N-acetyl-cysteine ethyl ester: evidence for nitrite-induced GSH oxidation to GSSG.\",\"authors\":\"Jan Thomas Michaelsen, Sabine Dehnert, Daniela Giustarini, Bibiana Beckmann, Dimitrios Tsikas\",\"doi\":\"10.1016/j.jchromb.2009.06.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glutathione exists in biological samples in the reduced form (GSH), as its disulfide (GSSG) and as a mixed disulfide (GSSR) with thiols (RSH). GSH is the most abundant low-molecular-mass thiol and plays important roles as a cofactor and as a main constituent of the intracellular redox status. Due to its own sulfhydryl (SH) group, GSH reacts readily with o-phthaldialdehyde (OPA) to form a highly stable and fluorescent isoindole derivative (GSH-OPA), which allows for sensitive and specific quantitative determination of GSH in biological systems by HPLC with fluorescence (FL) detection. In the present article we report on the utility of the novel, strongly disulfide bond-reducing thiol N-acetyl-cysteine ethyl ester (NACET) for the specific quantitative analysis of GSH and GSSG in the cytosol of red blood cells (RBC) as GSH-OPA derivative with FL (excitation/emission 338/458nm) or UV absorbance (338nm) detection. Unlike in aqueous solution, the derivatization of GSH in RBC cytosol yielded two closely related derivatives in the absence of NACET and only the GSH-OPA derivative in the presence of NACET. The HPLC method was optimized and validated for human RBC and applied to measure GSH and GSSG in RBC of healthy subjects. Basal GSH and GSSG concentrations were determined to be 2340+/-350microM and 11.4+/-3.2microM, respectively, in RBC of 12 healthy young volunteers (aged 23-38 years). The method was also applied to study the effects of nitrite on the glutathione status in intact and lysed human RBC. Nitrite at mM-concentrations caused instantaneous and considerable GSSG formation in lysed but much less pronounced in intact RBC. GSH externally added to lysed RBC inhibited nitrite-induced methemoglobin formation. Our findings suggest that nitric oxide/nitrite-related consumption rate of GSH, and presumably that of NADH and NADPH, could be of the order of 600micromol/day in RBC of healthy subjects.</p>\",\"PeriodicalId\":520661,\"journal\":{\"name\":\"Journal of chromatography. B, Analytical technologies in the biomedical and life sciences\",\"volume\":\" \",\"pages\":\"3405-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jchromb.2009.06.043\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chromatography. B, Analytical technologies in the biomedical and life sciences\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jchromb.2009.06.043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2009/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chromatography. B, Analytical technologies in the biomedical and life sciences","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.jchromb.2009.06.043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/7/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
HPLC analysis of human erythrocytic glutathione forms using OPA and N-acetyl-cysteine ethyl ester: evidence for nitrite-induced GSH oxidation to GSSG.
Glutathione exists in biological samples in the reduced form (GSH), as its disulfide (GSSG) and as a mixed disulfide (GSSR) with thiols (RSH). GSH is the most abundant low-molecular-mass thiol and plays important roles as a cofactor and as a main constituent of the intracellular redox status. Due to its own sulfhydryl (SH) group, GSH reacts readily with o-phthaldialdehyde (OPA) to form a highly stable and fluorescent isoindole derivative (GSH-OPA), which allows for sensitive and specific quantitative determination of GSH in biological systems by HPLC with fluorescence (FL) detection. In the present article we report on the utility of the novel, strongly disulfide bond-reducing thiol N-acetyl-cysteine ethyl ester (NACET) for the specific quantitative analysis of GSH and GSSG in the cytosol of red blood cells (RBC) as GSH-OPA derivative with FL (excitation/emission 338/458nm) or UV absorbance (338nm) detection. Unlike in aqueous solution, the derivatization of GSH in RBC cytosol yielded two closely related derivatives in the absence of NACET and only the GSH-OPA derivative in the presence of NACET. The HPLC method was optimized and validated for human RBC and applied to measure GSH and GSSG in RBC of healthy subjects. Basal GSH and GSSG concentrations were determined to be 2340+/-350microM and 11.4+/-3.2microM, respectively, in RBC of 12 healthy young volunteers (aged 23-38 years). The method was also applied to study the effects of nitrite on the glutathione status in intact and lysed human RBC. Nitrite at mM-concentrations caused instantaneous and considerable GSSG formation in lysed but much less pronounced in intact RBC. GSH externally added to lysed RBC inhibited nitrite-induced methemoglobin formation. Our findings suggest that nitric oxide/nitrite-related consumption rate of GSH, and presumably that of NADH and NADPH, could be of the order of 600micromol/day in RBC of healthy subjects.