{"title":"大鼠神经行为模型中使用激素避孕药的方法和考虑","authors":"Emily N. Hilz","doi":"10.1016/j.yfrne.2022.101011","DOIUrl":null,"url":null,"abstract":"<div><p>Hormonal contraceptives (HCs), prescribed to millions of women around the world, alter the ovarian hormonal cycle resulting in neurobehavioral changes in HC users. Human epidemiological and experimental data has characterized some of these effects with oftentimes conflicting or irreproducible results, reflecting a dearth of research considering different compositions, routes of administration, or time-courses of HC use. Non-human animal research can model these effects and help elucidate the underlying mechanisms by which different HCs modulate neurobehavioral outcomes. Still, animal models using HCs are not well-established. This may be because the pharmacological profile of HCs – including the metabolism, receptor binding affinity, and neuromodulatory effects – is dynamic and not always clearly translatable between animals and humans. The current review addresses these issues and provides basic methods and considerations for the use of HCs in animal models of neurobehavior to help advance the field of behavioral neuroendocrinology and inform decisions regarding to women’s health.</p></div>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":"66 ","pages":"Article 101011"},"PeriodicalIF":6.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Methods and considerations for the use of hormonal contraceptives in rat models of neurobehavior\",\"authors\":\"Emily N. Hilz\",\"doi\":\"10.1016/j.yfrne.2022.101011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hormonal contraceptives (HCs), prescribed to millions of women around the world, alter the ovarian hormonal cycle resulting in neurobehavioral changes in HC users. Human epidemiological and experimental data has characterized some of these effects with oftentimes conflicting or irreproducible results, reflecting a dearth of research considering different compositions, routes of administration, or time-courses of HC use. Non-human animal research can model these effects and help elucidate the underlying mechanisms by which different HCs modulate neurobehavioral outcomes. Still, animal models using HCs are not well-established. This may be because the pharmacological profile of HCs – including the metabolism, receptor binding affinity, and neuromodulatory effects – is dynamic and not always clearly translatable between animals and humans. The current review addresses these issues and provides basic methods and considerations for the use of HCs in animal models of neurobehavior to help advance the field of behavioral neuroendocrinology and inform decisions regarding to women’s health.</p></div>\",\"PeriodicalId\":12469,\"journal\":{\"name\":\"Frontiers in Neuroendocrinology\",\"volume\":\"66 \",\"pages\":\"Article 101011\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroendocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0091302222000346\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091302222000346","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Methods and considerations for the use of hormonal contraceptives in rat models of neurobehavior
Hormonal contraceptives (HCs), prescribed to millions of women around the world, alter the ovarian hormonal cycle resulting in neurobehavioral changes in HC users. Human epidemiological and experimental data has characterized some of these effects with oftentimes conflicting or irreproducible results, reflecting a dearth of research considering different compositions, routes of administration, or time-courses of HC use. Non-human animal research can model these effects and help elucidate the underlying mechanisms by which different HCs modulate neurobehavioral outcomes. Still, animal models using HCs are not well-established. This may be because the pharmacological profile of HCs – including the metabolism, receptor binding affinity, and neuromodulatory effects – is dynamic and not always clearly translatable between animals and humans. The current review addresses these issues and provides basic methods and considerations for the use of HCs in animal models of neurobehavior to help advance the field of behavioral neuroendocrinology and inform decisions regarding to women’s health.
期刊介绍:
Frontiers in Neuroendocrinology (FIN) publishes a wide range of informative articles including comprehensive reviews, systematic reviews, opinion pieces, and meta-analyses. While the majority of reviews are invited, we also embrace unsolicited reviews and meta-analyses, as well as proposals for thematic special issues, provided they meet our rigorous quality standards. In addition, we encourage authors to submit commentaries that concisely present fresh ideas or offer further analysis to delve deeper into the implications of an article published in our journal.