{"title":"在不同环境基质中检测带绦虫卵的诊断工具:系统综述。","authors":"Ganna Saelens , Lucy Robertson , Sarah Gabriël","doi":"10.1016/j.fawpar.2022.e00145","DOIUrl":null,"url":null,"abstract":"<div><p>The cestode family Taeniidae consists of the genera <em>Echinococcus</em> and <em>Taenia</em>, both of which include zoonotic tapeworms of serious public health importance. Various environmental matrices have been identified from which parasite transmission to animals and humans can occur, and many techniques for detecting taeniid eggs in different environments have been developed. However, the majority lack appropriate validation, and standardized egg isolation procedures are absent. This hampers interstudy comparisons and poses a challenge for future researchers when deciding which technique to implement for assessing taeniid egg contamination in a particular matrix. Therefore, the aim of this systematic review was to present an overview of the detection methods for taeniid eggs in the environment, to discuss and compare them, and to provide recommendations for future studies. In total, 1814 publications were retrieved from scientific databases, and, ultimately, data were systematically reviewed from 90 papers. The results provide an overview of numerous diagnostic tests for taeniid egg detection in (or on) water, food, soil, insects, objects, and air. These tools could be categorized as either conventional (light microscopy), molecular, or immunodetection tools. The relatively cheap microscopy techniques often lack sensitivity and are unable to identify a taeniid egg at the genus level. Nevertheless, several records ascribed a genus, or even species, to taeniid eggs that had been detected by light microscopy. Molecular and immunodetection tools offer better specificity, but still rely on the preceding egg recovery steps that also affect overall sensitivity. Finally, the majority of the methods lacked any attempt at performance evaluation and standardization, especially at the earlier stages of the analysis (e.g., sampling strategy, storage conditions, egg recovery), and viability was rarely addressed. As such, our review highlights the need for standardized, validated detection tools, that not only assess the extent of environmental contamination, but also the egg genus or species, and address viability.</p></div>","PeriodicalId":37941,"journal":{"name":"Food and Waterborne Parasitology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8a/b5/main.PMC8844199.pdf","citationCount":"6","resultStr":"{\"title\":\"Diagnostic tools for the detection of taeniid eggs in different environmental matrices: A systematic review.\",\"authors\":\"Ganna Saelens , Lucy Robertson , Sarah Gabriël\",\"doi\":\"10.1016/j.fawpar.2022.e00145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The cestode family Taeniidae consists of the genera <em>Echinococcus</em> and <em>Taenia</em>, both of which include zoonotic tapeworms of serious public health importance. Various environmental matrices have been identified from which parasite transmission to animals and humans can occur, and many techniques for detecting taeniid eggs in different environments have been developed. However, the majority lack appropriate validation, and standardized egg isolation procedures are absent. This hampers interstudy comparisons and poses a challenge for future researchers when deciding which technique to implement for assessing taeniid egg contamination in a particular matrix. Therefore, the aim of this systematic review was to present an overview of the detection methods for taeniid eggs in the environment, to discuss and compare them, and to provide recommendations for future studies. In total, 1814 publications were retrieved from scientific databases, and, ultimately, data were systematically reviewed from 90 papers. The results provide an overview of numerous diagnostic tests for taeniid egg detection in (or on) water, food, soil, insects, objects, and air. These tools could be categorized as either conventional (light microscopy), molecular, or immunodetection tools. The relatively cheap microscopy techniques often lack sensitivity and are unable to identify a taeniid egg at the genus level. Nevertheless, several records ascribed a genus, or even species, to taeniid eggs that had been detected by light microscopy. Molecular and immunodetection tools offer better specificity, but still rely on the preceding egg recovery steps that also affect overall sensitivity. Finally, the majority of the methods lacked any attempt at performance evaluation and standardization, especially at the earlier stages of the analysis (e.g., sampling strategy, storage conditions, egg recovery), and viability was rarely addressed. As such, our review highlights the need for standardized, validated detection tools, that not only assess the extent of environmental contamination, but also the egg genus or species, and address viability.</p></div>\",\"PeriodicalId\":37941,\"journal\":{\"name\":\"Food and Waterborne Parasitology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8a/b5/main.PMC8844199.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Waterborne Parasitology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405676622000026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Waterborne Parasitology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405676622000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Diagnostic tools for the detection of taeniid eggs in different environmental matrices: A systematic review.
The cestode family Taeniidae consists of the genera Echinococcus and Taenia, both of which include zoonotic tapeworms of serious public health importance. Various environmental matrices have been identified from which parasite transmission to animals and humans can occur, and many techniques for detecting taeniid eggs in different environments have been developed. However, the majority lack appropriate validation, and standardized egg isolation procedures are absent. This hampers interstudy comparisons and poses a challenge for future researchers when deciding which technique to implement for assessing taeniid egg contamination in a particular matrix. Therefore, the aim of this systematic review was to present an overview of the detection methods for taeniid eggs in the environment, to discuss and compare them, and to provide recommendations for future studies. In total, 1814 publications were retrieved from scientific databases, and, ultimately, data were systematically reviewed from 90 papers. The results provide an overview of numerous diagnostic tests for taeniid egg detection in (or on) water, food, soil, insects, objects, and air. These tools could be categorized as either conventional (light microscopy), molecular, or immunodetection tools. The relatively cheap microscopy techniques often lack sensitivity and are unable to identify a taeniid egg at the genus level. Nevertheless, several records ascribed a genus, or even species, to taeniid eggs that had been detected by light microscopy. Molecular and immunodetection tools offer better specificity, but still rely on the preceding egg recovery steps that also affect overall sensitivity. Finally, the majority of the methods lacked any attempt at performance evaluation and standardization, especially at the earlier stages of the analysis (e.g., sampling strategy, storage conditions, egg recovery), and viability was rarely addressed. As such, our review highlights the need for standardized, validated detection tools, that not only assess the extent of environmental contamination, but also the egg genus or species, and address viability.
期刊介绍:
Food and Waterborne Parasitology publishes high quality papers containing original research findings, investigative reports, and scientific proceedings on parasites which are transmitted to humans via the consumption of food or water. The relevant parasites include protozoa, nematodes, cestodes and trematodes which are transmitted by food or water and capable of infecting humans. Pertinent food includes products of animal or plant origin which are domestic or wild, and consumed by humans. Animals and plants from both terrestrial and aquatic sources are included, as well as studies related to potable and other types of water which serve to harbor, perpetuate or disseminate food and waterborne parasites. Studies dealing with prevalence, transmission, epidemiology, risk assessment and mitigation, including control measures and test methodologies for parasites in food and water are of particular interest. Evidence of the emergence of such parasites and interactions among domestic animals, wildlife and humans are of interest. The impact of parasites on the health and welfare of humans is viewed as very important and within scope of the journal. Manuscripts with scientifically generated information on associations between food and waterborne parasitic diseases and lifestyle, culture and economies are also welcome. Studies involving animal experiments must meet the International Guiding Principles for Biomedical Research Involving Animals as issued by the Council for International Organizations of Medical Sciences.