聚合物胶囊和胶束作为抗癌药物的有前途的载体。

Q3 Medicine
Tomasz Kubiak
{"title":"聚合物胶囊和胶束作为抗癌药物的有前途的载体。","authors":"Tomasz Kubiak","doi":"10.17219/pim/145513","DOIUrl":null,"url":null,"abstract":"<p><p>Polymeric micelles and capsules are promising candidates for carriers of antineoplastic medications. Biodegradability and broadly defined biocompatibility are the key features that should always characterize polymers intended for medical applications. A well-designed delivery system ought to ensure the safe transport of chemotherapeutic agents to the target area and thus minimize systemic exposure to these drugs, limiting their toxic effect, preferably to the cancer cells. Polymeric micelles are often tailored for encapsulation of water-insoluble drugs. Micellar structures are usually fabricated as a result of self-assembly of various amphiphilic block copolymers in aqueous environment. More advanced methods are used to form capsules with a liquid core and a shell made of fused polymer nanoor microparticles. Such a coating can have homogeneous or heterogeneous composition. Janus and patchy capsules are usually characterized by more useful and advanced properties. Although some polymeric carriers are designed for a sustained release of the cargo, more sophisticated approaches involve payload liberation on demand under the influence of selected chemical or physical stimuli. The variety of available polymers and a wide range of possibilities of forming copolymers from different kind of monomers make polymeric materials ideal for the production of drug delivery systems with the desired properties. The aim of the present review is to sum up selected aspects of the use of polymeric micelles as carriers of cytostatic drugs, taking into account clinical applications. The additional objective is to show the studies on creating alternative systems based on stimuli-responsive capsules with shells made of polymeric particles.</p>","PeriodicalId":20355,"journal":{"name":"Polimery w medycynie","volume":"52 1","pages":"37-50"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Polymeric capsules and micelles as promising carriers of anticancer drugs.\",\"authors\":\"Tomasz Kubiak\",\"doi\":\"10.17219/pim/145513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polymeric micelles and capsules are promising candidates for carriers of antineoplastic medications. Biodegradability and broadly defined biocompatibility are the key features that should always characterize polymers intended for medical applications. A well-designed delivery system ought to ensure the safe transport of chemotherapeutic agents to the target area and thus minimize systemic exposure to these drugs, limiting their toxic effect, preferably to the cancer cells. Polymeric micelles are often tailored for encapsulation of water-insoluble drugs. Micellar structures are usually fabricated as a result of self-assembly of various amphiphilic block copolymers in aqueous environment. More advanced methods are used to form capsules with a liquid core and a shell made of fused polymer nanoor microparticles. Such a coating can have homogeneous or heterogeneous composition. Janus and patchy capsules are usually characterized by more useful and advanced properties. Although some polymeric carriers are designed for a sustained release of the cargo, more sophisticated approaches involve payload liberation on demand under the influence of selected chemical or physical stimuli. The variety of available polymers and a wide range of possibilities of forming copolymers from different kind of monomers make polymeric materials ideal for the production of drug delivery systems with the desired properties. The aim of the present review is to sum up selected aspects of the use of polymeric micelles as carriers of cytostatic drugs, taking into account clinical applications. The additional objective is to show the studies on creating alternative systems based on stimuli-responsive capsules with shells made of polymeric particles.</p>\",\"PeriodicalId\":20355,\"journal\":{\"name\":\"Polimery w medycynie\",\"volume\":\"52 1\",\"pages\":\"37-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polimery w medycynie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17219/pim/145513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polimery w medycynie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17219/pim/145513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 4

摘要

聚合物胶束和胶囊是抗肿瘤药物载体的有希望的候选人。生物可降解性和广泛定义的生物相容性是用于医疗应用的聚合物的主要特征。一个设计良好的输送系统应该确保化疗药物安全运输到靶区,从而最大限度地减少这些药物的全身暴露,限制它们的毒性作用,最好是对癌细胞。聚合物胶束通常用于包封不溶于水的药物。胶束结构通常是各种两亲嵌段共聚物在水环境中自组装的结果。更先进的方法是用液体内核和由熔融聚合物纳米微粒制成的外壳来形成胶囊。这种涂层可以具有均质或非均质组合物。Janus和斑块胶囊通常具有更有用和先进的特性。虽然有些聚合物载体是为持续释放货物而设计的,但更复杂的方法涉及在选定的化学或物理刺激的影响下按需释放有效载荷。多种可用的聚合物和由不同种类的单体形成共聚物的广泛可能性使聚合物材料成为生产具有所需性能的药物输送系统的理想材料。本综述的目的是总结使用聚合物胶束作为细胞抑制剂药物的载体的选择方面,并考虑到临床应用。另一个目标是展示基于聚合物颗粒制成的壳的刺激响应胶囊的替代系统的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polymeric capsules and micelles as promising carriers of anticancer drugs.

Polymeric micelles and capsules are promising candidates for carriers of antineoplastic medications. Biodegradability and broadly defined biocompatibility are the key features that should always characterize polymers intended for medical applications. A well-designed delivery system ought to ensure the safe transport of chemotherapeutic agents to the target area and thus minimize systemic exposure to these drugs, limiting their toxic effect, preferably to the cancer cells. Polymeric micelles are often tailored for encapsulation of water-insoluble drugs. Micellar structures are usually fabricated as a result of self-assembly of various amphiphilic block copolymers in aqueous environment. More advanced methods are used to form capsules with a liquid core and a shell made of fused polymer nanoor microparticles. Such a coating can have homogeneous or heterogeneous composition. Janus and patchy capsules are usually characterized by more useful and advanced properties. Although some polymeric carriers are designed for a sustained release of the cargo, more sophisticated approaches involve payload liberation on demand under the influence of selected chemical or physical stimuli. The variety of available polymers and a wide range of possibilities of forming copolymers from different kind of monomers make polymeric materials ideal for the production of drug delivery systems with the desired properties. The aim of the present review is to sum up selected aspects of the use of polymeric micelles as carriers of cytostatic drugs, taking into account clinical applications. The additional objective is to show the studies on creating alternative systems based on stimuli-responsive capsules with shells made of polymeric particles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polimery w medycynie
Polimery w medycynie Medicine-Medicine (all)
CiteScore
3.30
自引率
0.00%
发文量
9
审稿时长
53 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信