{"title":"外部pH值变化改变了溶组织内阿米巴滋养体的增殖、红细胞吞噬、细胞骨架重塑和细胞形态","authors":"Sonia Cynthia Vanegas-Villa , Diana Milena Torres-Cifuentes , Lidia Baylon-Pacheco , Patricia Espíritu-Gordillo , Ángel Durán-Díaz , José Luis Rosales-Encina , Maritza Omaña-Molina","doi":"10.1016/j.protis.2022.125857","DOIUrl":null,"url":null,"abstract":"<div><p>To infect the human host, <span><em>Entamoeba histolytica</em></span><span><span><span> carries out processes requiring cytoskeleton<span> remodeling, which involves reorganizing the actin fibers. However, little is known about the external influence factors, e.g., the pH, on the parasite's cytoskeleton remodeling or cell morphology. Such influence becomes relevant given the pH gradient that the amoeba cope with when going through the human colonic mucus during infection. Therefore, we analyzed the proliferation, the reorganization of the actin fibers, and other actin structures and cell shape during adhesion to </span></span>fibronectin and </span>erythrophagocytosis in trophozoites at different external pH conditions (6.0, 6.5, 6.8, 7.5, 8.0). We found that the best condition of external pH to perform such functions was 6.8. At acid pH, the trophozoites presented better-defined actin fibers that formed a more compact network, while at alkaline pH, the fibers reorganized, forming a looser and less defined network. Similarly, the number of actin dots also changed from acid to alkaline pH. In conclusion, the external pH alters the proliferation of the amoebas and promotes the dynamic restructuration of their cytoskeleton, allowing them to carry out their functions.</span></p></div>","PeriodicalId":20781,"journal":{"name":"Protist","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"External pH Variations Modify Proliferation, Erythrophagocytosis, Cytoskeleton Remodeling, and Cell Morphology of Entamoeba histolytica Trophozoites\",\"authors\":\"Sonia Cynthia Vanegas-Villa , Diana Milena Torres-Cifuentes , Lidia Baylon-Pacheco , Patricia Espíritu-Gordillo , Ángel Durán-Díaz , José Luis Rosales-Encina , Maritza Omaña-Molina\",\"doi\":\"10.1016/j.protis.2022.125857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To infect the human host, <span><em>Entamoeba histolytica</em></span><span><span><span> carries out processes requiring cytoskeleton<span> remodeling, which involves reorganizing the actin fibers. However, little is known about the external influence factors, e.g., the pH, on the parasite's cytoskeleton remodeling or cell morphology. Such influence becomes relevant given the pH gradient that the amoeba cope with when going through the human colonic mucus during infection. Therefore, we analyzed the proliferation, the reorganization of the actin fibers, and other actin structures and cell shape during adhesion to </span></span>fibronectin and </span>erythrophagocytosis in trophozoites at different external pH conditions (6.0, 6.5, 6.8, 7.5, 8.0). We found that the best condition of external pH to perform such functions was 6.8. At acid pH, the trophozoites presented better-defined actin fibers that formed a more compact network, while at alkaline pH, the fibers reorganized, forming a looser and less defined network. Similarly, the number of actin dots also changed from acid to alkaline pH. In conclusion, the external pH alters the proliferation of the amoebas and promotes the dynamic restructuration of their cytoskeleton, allowing them to carry out their functions.</span></p></div>\",\"PeriodicalId\":20781,\"journal\":{\"name\":\"Protist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1434461022000025\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protist","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434461022000025","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
External pH Variations Modify Proliferation, Erythrophagocytosis, Cytoskeleton Remodeling, and Cell Morphology of Entamoeba histolytica Trophozoites
To infect the human host, Entamoeba histolytica carries out processes requiring cytoskeleton remodeling, which involves reorganizing the actin fibers. However, little is known about the external influence factors, e.g., the pH, on the parasite's cytoskeleton remodeling or cell morphology. Such influence becomes relevant given the pH gradient that the amoeba cope with when going through the human colonic mucus during infection. Therefore, we analyzed the proliferation, the reorganization of the actin fibers, and other actin structures and cell shape during adhesion to fibronectin and erythrophagocytosis in trophozoites at different external pH conditions (6.0, 6.5, 6.8, 7.5, 8.0). We found that the best condition of external pH to perform such functions was 6.8. At acid pH, the trophozoites presented better-defined actin fibers that formed a more compact network, while at alkaline pH, the fibers reorganized, forming a looser and less defined network. Similarly, the number of actin dots also changed from acid to alkaline pH. In conclusion, the external pH alters the proliferation of the amoebas and promotes the dynamic restructuration of their cytoskeleton, allowing them to carry out their functions.
期刊介绍:
Protist is the international forum for reporting substantial and novel findings in any area of research on protists. The criteria for acceptance of manuscripts are scientific excellence, significance, and interest for a broad readership. Suitable subject areas include: molecular, cell and developmental biology, biochemistry, systematics and phylogeny, and ecology of protists. Both autotrophic and heterotrophic protists as well as parasites are covered. The journal publishes original papers, short historical perspectives and includes a news and views section.