无源标量的反常耗散。

A L Mazzucato
{"title":"无源标量的反常耗散。","authors":"A L Mazzucato","doi":"10.1098/rsta.2021.0099","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the problem of anomalous dissipation for passive scalars advected by an incompressible flow. We review known results on anomalous dissipation from the point of view of the analysis of partial differential equations, and present simple rigorous examples of scalars that admit a Batchelor-type energy spectrum and exhibit anomalous dissipation in the limit of zero scalar diffusivity. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20210099"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Remarks on anomalous dissipation for passive scalars.\",\"authors\":\"A L Mazzucato\",\"doi\":\"10.1098/rsta.2021.0099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider the problem of anomalous dissipation for passive scalars advected by an incompressible flow. We review known results on anomalous dissipation from the point of view of the analysis of partial differential equations, and present simple rigorous examples of scalars that admit a Batchelor-type energy spectrum and exhibit anomalous dissipation in the limit of zero scalar diffusivity. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.</p>\",\"PeriodicalId\":286094,\"journal\":{\"name\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"volume\":\" \",\"pages\":\"20210099\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2021.0099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究不可压缩流平流中被动标量的反常耗散问题。我们从偏微分方程分析的角度回顾了已知的关于反常耗散的结果,并给出了允许batcheler型能谱和在零标量扩散极限下表现出反常耗散的标量的简单严谨的例子。这篇文章是主题“攀登湍流大厦(第一部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on anomalous dissipation for passive scalars.

We consider the problem of anomalous dissipation for passive scalars advected by an incompressible flow. We review known results on anomalous dissipation from the point of view of the analysis of partial differential equations, and present simple rigorous examples of scalars that admit a Batchelor-type energy spectrum and exhibit anomalous dissipation in the limit of zero scalar diffusivity. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信