Pritpal Singh, Marcin Wa Torek, Anna Ceglarek, Magdalena Fąfrowicz, Koryna Lewandowska, Tadeusz Marek, Barbara Sikora-Wachowicz, Paweł Oświȩcimka
{"title":"工作记忆任务和大脑静息状态的fMRI信号分析:基于中性粒细胞熵的聚类算法。","authors":"Pritpal Singh, Marcin Wa Torek, Anna Ceglarek, Magdalena Fąfrowicz, Koryna Lewandowska, Tadeusz Marek, Barbara Sikora-Wachowicz, Paweł Oświȩcimka","doi":"10.1142/S0129065722500125","DOIUrl":null,"url":null,"abstract":"<p><p>This study applies a neutrosophic-entropy-based clustering algorithm (NEBCA) to analyze the fMRI signals. We consider the data obtained from four different working memory tasks and the brain's resting state for the experimental purpose. Three non-overlapping clusters of data related to temporal brain activity are determined and statistically analyzed. Moreover, we used the Uniform Manifold Approximation and Projection (UMAP) method to reduce system dimensionality and present the effectiveness of NEBCA. The results show that using NEBCA, we are able to distinguish between different working memory tasks and resting-state and identify subtle differences in the related activity of brain regions. By analyzing the statistical properties of the entropy inside the clusters, the various regions of interest (ROIs), according to Automated Anatomical Labeling (AAL) atlas crucial for clustering procedure, are determined. The inferior occipital gyrus is established as an important brain region in distinguishing the resting state from the tasks. Moreover, the inferior occipital gyrus and superior parietal lobule are identified as necessary to correct the data discrimination related to the different memory tasks. We verified the statistical significance of the results through the two-sample <i>t</i>-test and analysis of surrogates performed by randomization of the cluster elements. The presented methodology is also appropriate to determine the influence of time of day on brain activity patterns. The differences between working memory tasks and resting-state in the morning are related to a lower index of small-worldness and sleep inertia in the first hours after waking. We also compared the performance of NEBCA to two existing algorithms, KMCA and FKMCA. We showed the advantage of the NEBCA over these algorithms that could not effectively accumulate fMRI signals with higher variability.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"32 4","pages":"2250012"},"PeriodicalIF":6.6000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Analysis of fMRI Signals from Working Memory Tasks and Resting-State of Brain: Neutrosophic-Entropy-Based Clustering Algorithm.\",\"authors\":\"Pritpal Singh, Marcin Wa Torek, Anna Ceglarek, Magdalena Fąfrowicz, Koryna Lewandowska, Tadeusz Marek, Barbara Sikora-Wachowicz, Paweł Oświȩcimka\",\"doi\":\"10.1142/S0129065722500125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study applies a neutrosophic-entropy-based clustering algorithm (NEBCA) to analyze the fMRI signals. We consider the data obtained from four different working memory tasks and the brain's resting state for the experimental purpose. Three non-overlapping clusters of data related to temporal brain activity are determined and statistically analyzed. Moreover, we used the Uniform Manifold Approximation and Projection (UMAP) method to reduce system dimensionality and present the effectiveness of NEBCA. The results show that using NEBCA, we are able to distinguish between different working memory tasks and resting-state and identify subtle differences in the related activity of brain regions. By analyzing the statistical properties of the entropy inside the clusters, the various regions of interest (ROIs), according to Automated Anatomical Labeling (AAL) atlas crucial for clustering procedure, are determined. The inferior occipital gyrus is established as an important brain region in distinguishing the resting state from the tasks. Moreover, the inferior occipital gyrus and superior parietal lobule are identified as necessary to correct the data discrimination related to the different memory tasks. We verified the statistical significance of the results through the two-sample <i>t</i>-test and analysis of surrogates performed by randomization of the cluster elements. The presented methodology is also appropriate to determine the influence of time of day on brain activity patterns. The differences between working memory tasks and resting-state in the morning are related to a lower index of small-worldness and sleep inertia in the first hours after waking. We also compared the performance of NEBCA to two existing algorithms, KMCA and FKMCA. We showed the advantage of the NEBCA over these algorithms that could not effectively accumulate fMRI signals with higher variability.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":\"32 4\",\"pages\":\"2250012\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065722500125\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500125","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Analysis of fMRI Signals from Working Memory Tasks and Resting-State of Brain: Neutrosophic-Entropy-Based Clustering Algorithm.
This study applies a neutrosophic-entropy-based clustering algorithm (NEBCA) to analyze the fMRI signals. We consider the data obtained from four different working memory tasks and the brain's resting state for the experimental purpose. Three non-overlapping clusters of data related to temporal brain activity are determined and statistically analyzed. Moreover, we used the Uniform Manifold Approximation and Projection (UMAP) method to reduce system dimensionality and present the effectiveness of NEBCA. The results show that using NEBCA, we are able to distinguish between different working memory tasks and resting-state and identify subtle differences in the related activity of brain regions. By analyzing the statistical properties of the entropy inside the clusters, the various regions of interest (ROIs), according to Automated Anatomical Labeling (AAL) atlas crucial for clustering procedure, are determined. The inferior occipital gyrus is established as an important brain region in distinguishing the resting state from the tasks. Moreover, the inferior occipital gyrus and superior parietal lobule are identified as necessary to correct the data discrimination related to the different memory tasks. We verified the statistical significance of the results through the two-sample t-test and analysis of surrogates performed by randomization of the cluster elements. The presented methodology is also appropriate to determine the influence of time of day on brain activity patterns. The differences between working memory tasks and resting-state in the morning are related to a lower index of small-worldness and sleep inertia in the first hours after waking. We also compared the performance of NEBCA to two existing algorithms, KMCA and FKMCA. We showed the advantage of the NEBCA over these algorithms that could not effectively accumulate fMRI signals with higher variability.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.