Hong Peng, Ying-Si Wang, Jie Wang, Su-Juan Li, Ting-Li Sun, Tong Liu, Qing-Shan Shi, Gang Zhou, Xiao-Bao Xie
{"title":"苦楝果实水提物化学成分及其对金黄色葡萄球菌转录组的影响。","authors":"Hong Peng, Ying-Si Wang, Jie Wang, Su-Juan Li, Ting-Li Sun, Tong Liu, Qing-Shan Shi, Gang Zhou, Xiao-Bao Xie","doi":"10.33073/pjm-2021-041","DOIUrl":null,"url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> is the causative agent of numerous and varied clinical infections. Crude aqueous extracts of <i>Melia azedarach</i> fruits inhibit the planktonic growth and initial biofilm formation of <i>S. aureus</i> in a dose-dependent manner. Moreover, the biofilm topologies became sparse and decreased as the concentration of the aqueous extracts increased. RNA-Seq analyses revealed 532 differentially expressed genes (DEGs) after <i>S. aureus</i> exposure to 0.25 g/ml extracts; 319 of them were upregulated, and 213 were downregulated. The majority of DEGs were categorized into abundant sub-groups in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, untargeted UHPLC-MS/MS analyses of the aqueous extracts of <i>M. azedarach</i> fruits demonstrated a highly complex profile in positive and negative electrospray ionization modes. The extracts primarily consisted of lipids and lipid-like molecules, organic acids and their derivatives, phenylpropanoids, polyketides, organoheterocyclic compounds, and benzenoids annotated by abundant lipid maps and KEGG pathways. Overall, this study provides evidences that the aqueous extracts of <i>M. azedarach</i> fruits can control <i>S. aureus</i> infections and sought to understand the mode of action of these extracts on <i>S. aureus</i>.</p>","PeriodicalId":20272,"journal":{"name":"Polish Journal of Microbiology","volume":"70 4","pages":"447-459"},"PeriodicalIF":2.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d7/dc/pjm-70-4-041.PMC8702609.pdf","citationCount":"2","resultStr":"{\"title\":\"Chemical Components of Aqueous Extracts of <i>Melia azedarach</i> Fruits and Their Effects on The Transcriptome of <i>Staphylococcus aureus</i>.\",\"authors\":\"Hong Peng, Ying-Si Wang, Jie Wang, Su-Juan Li, Ting-Li Sun, Tong Liu, Qing-Shan Shi, Gang Zhou, Xiao-Bao Xie\",\"doi\":\"10.33073/pjm-2021-041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Staphylococcus aureus</i> is the causative agent of numerous and varied clinical infections. Crude aqueous extracts of <i>Melia azedarach</i> fruits inhibit the planktonic growth and initial biofilm formation of <i>S. aureus</i> in a dose-dependent manner. Moreover, the biofilm topologies became sparse and decreased as the concentration of the aqueous extracts increased. RNA-Seq analyses revealed 532 differentially expressed genes (DEGs) after <i>S. aureus</i> exposure to 0.25 g/ml extracts; 319 of them were upregulated, and 213 were downregulated. The majority of DEGs were categorized into abundant sub-groups in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, untargeted UHPLC-MS/MS analyses of the aqueous extracts of <i>M. azedarach</i> fruits demonstrated a highly complex profile in positive and negative electrospray ionization modes. The extracts primarily consisted of lipids and lipid-like molecules, organic acids and their derivatives, phenylpropanoids, polyketides, organoheterocyclic compounds, and benzenoids annotated by abundant lipid maps and KEGG pathways. Overall, this study provides evidences that the aqueous extracts of <i>M. azedarach</i> fruits can control <i>S. aureus</i> infections and sought to understand the mode of action of these extracts on <i>S. aureus</i>.</p>\",\"PeriodicalId\":20272,\"journal\":{\"name\":\"Polish Journal of Microbiology\",\"volume\":\"70 4\",\"pages\":\"447-459\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d7/dc/pjm-70-4-041.PMC8702609.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.33073/pjm-2021-041\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.33073/pjm-2021-041","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Chemical Components of Aqueous Extracts of Melia azedarach Fruits and Their Effects on The Transcriptome of Staphylococcus aureus.
Staphylococcus aureus is the causative agent of numerous and varied clinical infections. Crude aqueous extracts of Melia azedarach fruits inhibit the planktonic growth and initial biofilm formation of S. aureus in a dose-dependent manner. Moreover, the biofilm topologies became sparse and decreased as the concentration of the aqueous extracts increased. RNA-Seq analyses revealed 532 differentially expressed genes (DEGs) after S. aureus exposure to 0.25 g/ml extracts; 319 of them were upregulated, and 213 were downregulated. The majority of DEGs were categorized into abundant sub-groups in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, untargeted UHPLC-MS/MS analyses of the aqueous extracts of M. azedarach fruits demonstrated a highly complex profile in positive and negative electrospray ionization modes. The extracts primarily consisted of lipids and lipid-like molecules, organic acids and their derivatives, phenylpropanoids, polyketides, organoheterocyclic compounds, and benzenoids annotated by abundant lipid maps and KEGG pathways. Overall, this study provides evidences that the aqueous extracts of M. azedarach fruits can control S. aureus infections and sought to understand the mode of action of these extracts on S. aureus.
期刊介绍:
Polish Journal of Microbiology (PJM) publishes original research articles describing various aspects of basic and applied microbiological research. We are especially interested in articles regarding
- basic biological properties of bacteria and archaea, viruses, and simple
- eukaryotic microorganisms
- genetics and molecular biology
- microbial ecology
- medical bacteriology and public health
- food microbiology
- industrial microbiology
- bacterial biotechnology