Farah M Shurrab, Duaa W Al-Sadeq, Fatima Humaira Amanullah, Enas S Al-Absi, Hamda Qotba, Hadi M Yassine, Laith J Abu-Raddad, Gheyath K Nasrallah
{"title":"登革病毒与SARS-CoV-2-IgG抗体血清交叉反应的低风险","authors":"Farah M Shurrab, Duaa W Al-Sadeq, Fatima Humaira Amanullah, Enas S Al-Absi, Hamda Qotba, Hadi M Yassine, Laith J Abu-Raddad, Gheyath K Nasrallah","doi":"10.1159/000522479","DOIUrl":null,"url":null,"abstract":"<p><p>Several studies have reported serological cross-reactivity of the immune responses between SARS-CoV-2 and DENV. Most of the available studies are based on the point-of-care rapid testing kits. However, some rapid test kits have low specificity and can generate false positives. Hence, we aimed to investigate the potential serological cross-reactivity between SARS-CoV-2 and DENV-IgG antibodies using advanced assays including chemiluminescence immunoassay (CLIA) and enzyme-linked immunosorbent assay (ELISA) test. A total of 90 DENV-IgG-ELISA-positive and 90 DENV-IgG-ELISA-negative prepandemic sera were tested for anti-SARS-CoV-2-IgG using the automated CL-900i CLIA assay. Furthermore, a total of 91 SARS-CoV-2-IgG-CLIA-positive and 91 SARS-CoV-2-IgG-CLIA-negative postpandemic sera were tested for anti-DENV-IgG using the NovaLisa ELISA kit. The DENV-IgG-positive sera resulted in five positives and 85 negatives for SARS-CoV-2-IgG. Similarly, the DENV-IgG-negative sera also resulted in 5 positives and 85 negatives for SARS-CoV-2-IgG. No statistically significant difference in specificity between the DENV-IgG-positive and DENV-IgG-negative sera was found (p value = 1.00). The SARS-CoV-2-IgG-positive sera displayed 43 positives, 47 negatives, and 1 equivocal for DENV-IgG, whereas the SARS-CoV-2-IgG-negative sera resulted in 50 positives, 40 negatives, and 1 equivocal for DENV-IgG. No statistically significant difference in the proportion that is DENV-IgG positive between the SARS-CoV-2-IgG-positive and SARS-CoV-2-IgG-negative sera (p value = 0.58). In conclusion, there is a low risk of serological cross-reactivity between the DENV and SARS-CoV-2-IgG antibodies when using advanced detection assays.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059058/pdf/","citationCount":"4","resultStr":"{\"title\":\"Low Risk of Serological Cross-Reactivity between the Dengue Virus and SARS-CoV-2-IgG Antibodies Using Advanced Detection Assays.\",\"authors\":\"Farah M Shurrab, Duaa W Al-Sadeq, Fatima Humaira Amanullah, Enas S Al-Absi, Hamda Qotba, Hadi M Yassine, Laith J Abu-Raddad, Gheyath K Nasrallah\",\"doi\":\"10.1159/000522479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several studies have reported serological cross-reactivity of the immune responses between SARS-CoV-2 and DENV. Most of the available studies are based on the point-of-care rapid testing kits. However, some rapid test kits have low specificity and can generate false positives. Hence, we aimed to investigate the potential serological cross-reactivity between SARS-CoV-2 and DENV-IgG antibodies using advanced assays including chemiluminescence immunoassay (CLIA) and enzyme-linked immunosorbent assay (ELISA) test. A total of 90 DENV-IgG-ELISA-positive and 90 DENV-IgG-ELISA-negative prepandemic sera were tested for anti-SARS-CoV-2-IgG using the automated CL-900i CLIA assay. Furthermore, a total of 91 SARS-CoV-2-IgG-CLIA-positive and 91 SARS-CoV-2-IgG-CLIA-negative postpandemic sera were tested for anti-DENV-IgG using the NovaLisa ELISA kit. The DENV-IgG-positive sera resulted in five positives and 85 negatives for SARS-CoV-2-IgG. Similarly, the DENV-IgG-negative sera also resulted in 5 positives and 85 negatives for SARS-CoV-2-IgG. No statistically significant difference in specificity between the DENV-IgG-positive and DENV-IgG-negative sera was found (p value = 1.00). The SARS-CoV-2-IgG-positive sera displayed 43 positives, 47 negatives, and 1 equivocal for DENV-IgG, whereas the SARS-CoV-2-IgG-negative sera resulted in 50 positives, 40 negatives, and 1 equivocal for DENV-IgG. No statistically significant difference in the proportion that is DENV-IgG positive between the SARS-CoV-2-IgG-positive and SARS-CoV-2-IgG-negative sera (p value = 0.58). In conclusion, there is a low risk of serological cross-reactivity between the DENV and SARS-CoV-2-IgG antibodies when using advanced detection assays.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059058/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000522479\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000522479","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Low Risk of Serological Cross-Reactivity between the Dengue Virus and SARS-CoV-2-IgG Antibodies Using Advanced Detection Assays.
Several studies have reported serological cross-reactivity of the immune responses between SARS-CoV-2 and DENV. Most of the available studies are based on the point-of-care rapid testing kits. However, some rapid test kits have low specificity and can generate false positives. Hence, we aimed to investigate the potential serological cross-reactivity between SARS-CoV-2 and DENV-IgG antibodies using advanced assays including chemiluminescence immunoassay (CLIA) and enzyme-linked immunosorbent assay (ELISA) test. A total of 90 DENV-IgG-ELISA-positive and 90 DENV-IgG-ELISA-negative prepandemic sera were tested for anti-SARS-CoV-2-IgG using the automated CL-900i CLIA assay. Furthermore, a total of 91 SARS-CoV-2-IgG-CLIA-positive and 91 SARS-CoV-2-IgG-CLIA-negative postpandemic sera were tested for anti-DENV-IgG using the NovaLisa ELISA kit. The DENV-IgG-positive sera resulted in five positives and 85 negatives for SARS-CoV-2-IgG. Similarly, the DENV-IgG-negative sera also resulted in 5 positives and 85 negatives for SARS-CoV-2-IgG. No statistically significant difference in specificity between the DENV-IgG-positive and DENV-IgG-negative sera was found (p value = 1.00). The SARS-CoV-2-IgG-positive sera displayed 43 positives, 47 negatives, and 1 equivocal for DENV-IgG, whereas the SARS-CoV-2-IgG-negative sera resulted in 50 positives, 40 negatives, and 1 equivocal for DENV-IgG. No statistically significant difference in the proportion that is DENV-IgG positive between the SARS-CoV-2-IgG-positive and SARS-CoV-2-IgG-negative sera (p value = 0.58). In conclusion, there is a low risk of serological cross-reactivity between the DENV and SARS-CoV-2-IgG antibodies when using advanced detection assays.