{"title":"计算模拟非正态数据的Fleishman方程的实解","authors":"Nathaniel E. Helwig","doi":"10.1111/bmsp.12259","DOIUrl":null,"url":null,"abstract":"<p>Fleishman's power method is frequently used to simulate non-normal data with a desired skewness and kurtosis. Fleishman's method requires solving a system of nonlinear equations to find the third-order polynomial weights that transform a standard normal variable into a non-normal variable with desired moments. Most users of the power method seem unaware that Fleishman's equations have multiple solutions for typical combinations of skewness and kurtosis. Furthermore, researchers lack a simple method for exploring the multiple solutions of Fleishman's equations, so most applications only consider a single solution. In this paper, we propose novel methods for finding all real-valued solutions of Fleishman's equations. Additionally, we characterize the solutions in terms of differences in higher order moments. Our theoretical analysis of the power method reveals that there typically exists two solutions of Fleishman's equations that have noteworthy differences in higher order moments. Using simulated examples, we demonstrate that these differences can have remarkable effects on the shape of the non-normal distribution, as well as the sampling distributions of statistics calculated from the data. Some considerations for choosing a solution are discussed, and some recommendations for improved reporting standards are provided.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"75 2","pages":"319-333"},"PeriodicalIF":1.5000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the real solutions of Fleishman's equations for simulating non-normal data\",\"authors\":\"Nathaniel E. Helwig\",\"doi\":\"10.1111/bmsp.12259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fleishman's power method is frequently used to simulate non-normal data with a desired skewness and kurtosis. Fleishman's method requires solving a system of nonlinear equations to find the third-order polynomial weights that transform a standard normal variable into a non-normal variable with desired moments. Most users of the power method seem unaware that Fleishman's equations have multiple solutions for typical combinations of skewness and kurtosis. Furthermore, researchers lack a simple method for exploring the multiple solutions of Fleishman's equations, so most applications only consider a single solution. In this paper, we propose novel methods for finding all real-valued solutions of Fleishman's equations. Additionally, we characterize the solutions in terms of differences in higher order moments. Our theoretical analysis of the power method reveals that there typically exists two solutions of Fleishman's equations that have noteworthy differences in higher order moments. Using simulated examples, we demonstrate that these differences can have remarkable effects on the shape of the non-normal distribution, as well as the sampling distributions of statistics calculated from the data. Some considerations for choosing a solution are discussed, and some recommendations for improved reporting standards are provided.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\"75 2\",\"pages\":\"319-333\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12259\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12259","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Computing the real solutions of Fleishman's equations for simulating non-normal data
Fleishman's power method is frequently used to simulate non-normal data with a desired skewness and kurtosis. Fleishman's method requires solving a system of nonlinear equations to find the third-order polynomial weights that transform a standard normal variable into a non-normal variable with desired moments. Most users of the power method seem unaware that Fleishman's equations have multiple solutions for typical combinations of skewness and kurtosis. Furthermore, researchers lack a simple method for exploring the multiple solutions of Fleishman's equations, so most applications only consider a single solution. In this paper, we propose novel methods for finding all real-valued solutions of Fleishman's equations. Additionally, we characterize the solutions in terms of differences in higher order moments. Our theoretical analysis of the power method reveals that there typically exists two solutions of Fleishman's equations that have noteworthy differences in higher order moments. Using simulated examples, we demonstrate that these differences can have remarkable effects on the shape of the non-normal distribution, as well as the sampling distributions of statistics calculated from the data. Some considerations for choosing a solution are discussed, and some recommendations for improved reporting standards are provided.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.