用于交通速度预测的混合深度学习方法。

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Big Data Pub Date : 2024-10-01 Epub Date: 2022-02-02 DOI:10.1089/big.2021.0251
Fei Dai, Pengfei Cao, Penggui Huang, Qi Mo, Bi Huang
{"title":"用于交通速度预测的混合深度学习方法。","authors":"Fei Dai, Pengfei Cao, Penggui Huang, Qi Mo, Bi Huang","doi":"10.1089/big.2021.0251","DOIUrl":null,"url":null,"abstract":"<p><p>Traffic speed prediction plays a fundamental role in traffic management and driving route planning. However, timely accurate traffic speed prediction is challenging as it is affected by complex spatial and temporal correlations. Most existing works cannot simultaneously model spatial and temporal correlations in traffic data, resulting in unsatisfactory prediction performance. In this article, we propose a novel hybrid deep learning approach, named HDL4TSP, to predict traffic speed in each region of a city, which consists of an input layer, a spatial layer, a temporal layer, a fusion layer, and an output layer. Specifically, first, the spatial layer employs graph convolutional networks to capture spatial near dependencies and spatial distant dependencies in the spatial dimension. Second, the temporal layer employs convolutional long short-term memory (ConvLSTM) networks to model closeness, daily periodicity, and weekly periodicity in the temporal dimension. Third, the fusion layer designs a fusion component to merge the outputs of ConvLSTM networks. Finally, we conduct extensive experiments and experimental results to show that HDL4TSP outperforms four baselines on two real-world data sets.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"377-389"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Deep Learning Approach for Traffic Speed Prediction.\",\"authors\":\"Fei Dai, Pengfei Cao, Penggui Huang, Qi Mo, Bi Huang\",\"doi\":\"10.1089/big.2021.0251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traffic speed prediction plays a fundamental role in traffic management and driving route planning. However, timely accurate traffic speed prediction is challenging as it is affected by complex spatial and temporal correlations. Most existing works cannot simultaneously model spatial and temporal correlations in traffic data, resulting in unsatisfactory prediction performance. In this article, we propose a novel hybrid deep learning approach, named HDL4TSP, to predict traffic speed in each region of a city, which consists of an input layer, a spatial layer, a temporal layer, a fusion layer, and an output layer. Specifically, first, the spatial layer employs graph convolutional networks to capture spatial near dependencies and spatial distant dependencies in the spatial dimension. Second, the temporal layer employs convolutional long short-term memory (ConvLSTM) networks to model closeness, daily periodicity, and weekly periodicity in the temporal dimension. Third, the fusion layer designs a fusion component to merge the outputs of ConvLSTM networks. Finally, we conduct extensive experiments and experimental results to show that HDL4TSP outperforms four baselines on two real-world data sets.</p>\",\"PeriodicalId\":51314,\"journal\":{\"name\":\"Big Data\",\"volume\":\" \",\"pages\":\"377-389\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/big.2021.0251\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2021.0251","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

交通速度预测在交通管理和行车路线规划中发挥着重要作用。然而,由于受到复杂的空间和时间相关性的影响,及时准确地预测交通速度具有挑战性。大多数现有研究都无法同时对交通数据中的空间和时间相关性进行建模,导致预测效果不尽如人意。在本文中,我们提出了一种新颖的混合深度学习方法,名为 HDL4TSP,用于预测城市各区域的交通速度,该方法由输入层、空间层、时间层、融合层和输出层组成。具体来说,首先,空间层采用图卷积网络来捕捉空间维度上的空间近依赖关系和空间远依赖关系。其次,时间层采用卷积长短期记忆(ConvLSTM)网络来模拟时间维度上的亲疏关系、日周期性和周周期性。第三,融合层设计了一个融合组件来合并 ConvLSTM 网络的输出。最后,我们进行了大量实验,实验结果表明 HDL4TSP 在两个真实世界数据集上的表现优于四种基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Deep Learning Approach for Traffic Speed Prediction.

Traffic speed prediction plays a fundamental role in traffic management and driving route planning. However, timely accurate traffic speed prediction is challenging as it is affected by complex spatial and temporal correlations. Most existing works cannot simultaneously model spatial and temporal correlations in traffic data, resulting in unsatisfactory prediction performance. In this article, we propose a novel hybrid deep learning approach, named HDL4TSP, to predict traffic speed in each region of a city, which consists of an input layer, a spatial layer, a temporal layer, a fusion layer, and an output layer. Specifically, first, the spatial layer employs graph convolutional networks to capture spatial near dependencies and spatial distant dependencies in the spatial dimension. Second, the temporal layer employs convolutional long short-term memory (ConvLSTM) networks to model closeness, daily periodicity, and weekly periodicity in the temporal dimension. Third, the fusion layer designs a fusion component to merge the outputs of ConvLSTM networks. Finally, we conduct extensive experiments and experimental results to show that HDL4TSP outperforms four baselines on two real-world data sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data
Big Data COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍: Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions. Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government. Big Data coverage includes: Big data industry standards, New technologies being developed specifically for big data, Data acquisition, cleaning, distribution, and best practices, Data protection, privacy, and policy, Business interests from research to product, The changing role of business intelligence, Visualization and design principles of big data infrastructures, Physical interfaces and robotics, Social networking advantages for Facebook, Twitter, Amazon, Google, etc, Opportunities around big data and how companies can harness it to their advantage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信