用于多尺度分析的粗粒化和哈小波变换

William J Bosl, Tobias Loddenkemper, Solveig Vieluf
{"title":"用于多尺度分析的粗粒化和哈小波变换","authors":"William J Bosl, Tobias Loddenkemper, Solveig Vieluf","doi":"10.1186/s42234-022-00085-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Multiscale entropy (MSE) has become increasingly common as a quantitative tool for analysis of physiological signals. The MSE computation involves first decomposing a signal into multiple sub-signal 'scales' using a coarse-graining algorithm.</p><p><strong>Methods: </strong>The coarse-graining algorithm averages adjacent values in a time series to produce a coarser scale time series. The Haar wavelet transform convolutes a time series with a scaled square wave function to produce an approximation which is equivalent to averaging points.</p><p><strong>Results: </strong>Coarse-graining is mathematically identical to the Haar wavelet transform approximations. Thus, multiscale entropy is entropy computed on sub-signals derived from approximations of the Haar wavelet transform. By describing coarse-graining algorithms properly as Haar wavelet transforms, the meaning of 'scales' as wavelet approximations becomes transparent. The computed value of entropy is different with different wavelet basis functions, suggesting further research is needed to determine optimal methods for computing multiscale entropy.</p><p><strong>Conclusion: </strong>Coarse-graining is mathematically identical to Haar wavelet approximations at power-of-two scales. Referring to coarse-graining as a Haar wavelet transform motivates research into the optimal approach to signal decomposition for entropy analysis.</p>","PeriodicalId":72363,"journal":{"name":"Bioelectronic medicine","volume":" ","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809023/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coarse-graining and the Haar wavelet transform for multiscale analysis.\",\"authors\":\"William J Bosl, Tobias Loddenkemper, Solveig Vieluf\",\"doi\":\"10.1186/s42234-022-00085-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Multiscale entropy (MSE) has become increasingly common as a quantitative tool for analysis of physiological signals. The MSE computation involves first decomposing a signal into multiple sub-signal 'scales' using a coarse-graining algorithm.</p><p><strong>Methods: </strong>The coarse-graining algorithm averages adjacent values in a time series to produce a coarser scale time series. The Haar wavelet transform convolutes a time series with a scaled square wave function to produce an approximation which is equivalent to averaging points.</p><p><strong>Results: </strong>Coarse-graining is mathematically identical to the Haar wavelet transform approximations. Thus, multiscale entropy is entropy computed on sub-signals derived from approximations of the Haar wavelet transform. By describing coarse-graining algorithms properly as Haar wavelet transforms, the meaning of 'scales' as wavelet approximations becomes transparent. The computed value of entropy is different with different wavelet basis functions, suggesting further research is needed to determine optimal methods for computing multiscale entropy.</p><p><strong>Conclusion: </strong>Coarse-graining is mathematically identical to Haar wavelet approximations at power-of-two scales. Referring to coarse-graining as a Haar wavelet transform motivates research into the optimal approach to signal decomposition for entropy analysis.</p>\",\"PeriodicalId\":72363,\"journal\":{\"name\":\"Bioelectronic medicine\",\"volume\":\" \",\"pages\":\"3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809023/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectronic medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42234-022-00085-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectronic medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42234-022-00085-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:多尺度熵(MSE)作为一种定量分析生理信号的工具已变得越来越普遍。多尺度熵(MSE)的计算包括首先使用粗粒度算法将信号分解为多个子信号 "尺度":粗粒化算法是将时间序列中相邻的数值平均化,从而产生更粗尺度的时间序列。哈小波变换将时间序列与缩放的方波函数进行卷积,以产生一个近似值,该近似值等同于平均点:结果:粗粒化在数学上与哈小波变换近似相同。因此,多尺度熵是根据哈尔小波变换近似值得出的子信号计算的熵。通过将粗粒化算法恰当地描述为哈小波变换,"尺度 "作为小波近似值的含义就变得非常明显。不同的小波基函数计算出的熵值不同,这表明需要进一步研究确定计算多尺度熵的最佳方法:结论:粗粒化在数学上与二阶幂尺度的哈小波近似相同。将粗粒化称为哈小波变换,有助于研究熵分析信号分解的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coarse-graining and the Haar wavelet transform for multiscale analysis.

Coarse-graining and the Haar wavelet transform for multiscale analysis.

Coarse-graining and the Haar wavelet transform for multiscale analysis.

Coarse-graining and the Haar wavelet transform for multiscale analysis.

Background: Multiscale entropy (MSE) has become increasingly common as a quantitative tool for analysis of physiological signals. The MSE computation involves first decomposing a signal into multiple sub-signal 'scales' using a coarse-graining algorithm.

Methods: The coarse-graining algorithm averages adjacent values in a time series to produce a coarser scale time series. The Haar wavelet transform convolutes a time series with a scaled square wave function to produce an approximation which is equivalent to averaging points.

Results: Coarse-graining is mathematically identical to the Haar wavelet transform approximations. Thus, multiscale entropy is entropy computed on sub-signals derived from approximations of the Haar wavelet transform. By describing coarse-graining algorithms properly as Haar wavelet transforms, the meaning of 'scales' as wavelet approximations becomes transparent. The computed value of entropy is different with different wavelet basis functions, suggesting further research is needed to determine optimal methods for computing multiscale entropy.

Conclusion: Coarse-graining is mathematically identical to Haar wavelet approximations at power-of-two scales. Referring to coarse-graining as a Haar wavelet transform motivates research into the optimal approach to signal decomposition for entropy analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信