Ze-Hua Guo, Shiu-Cheung Lung, Mohd Fadhli Hamdan, Mee-Len Chye
{"title":"植物脂结合蛋白与其配体的相互作用","authors":"Ze-Hua Guo, Shiu-Cheung Lung, Mohd Fadhli Hamdan, Mee-Len Chye","doi":"10.1016/j.plipres.2022.101156","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Lipids participate in diverse biological functions including </span>signal transduction, cellular membrane biogenesis and carbon storage. Following </span><em>de novo</em><span> biosynthesis<span><span> in the plastids, fatty acids (FAs) are transported as acyl-CoA esters to the endoplasmic reticulum where glycerol-3-phosphate undergoes a series of acyl-CoA-dependent </span>acylation </span></span><em>via</em><span> the Kennedy pathway to form triacylglycerols<span> for subsequent assembly into oils. Alternatively, newly synthesized FAs are incorporated into phosphatidylcholine<span> (PC) by a PC:acyl-CoA exchange process defined as “acyl editing”. Acyl-CoA-binding proteins (ACBPs) at various subcellular locations can function in lipid transfer by binding and transporting acyl-CoA esters and maintaining intracellular acyl-CoA pools. Widely distributed in the plant kingdom, ACBPs are found in all eukaryotes and some eubacteria. In both rice and Arabidopsis<span><span><span>, six forms of ACBPs co-exist and are classified into four groups based on their functional domains. Their conserved four-helix structure facilitates interaction with acyl-CoA esters. ACBPs also interact with phospholipids as well as protein partners and function in </span>seed oil regulation, development, pathogen defense and stress responses. Besides the ACBPs, other proteins such as the lipid transfer proteins (LTPs), </span>annexins and lipid droplet-associated proteins are also important lipid-binding proteins. While annexins bind Ca</span></span></span></span><sup>2+</sup><span> and phospholipids, LTPs transport lipid molecules including FAs, acyl-CoA esters and phospholipids.</span></p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"86 ","pages":"Article 101156"},"PeriodicalIF":14.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Interactions between plant lipid-binding proteins and their ligands\",\"authors\":\"Ze-Hua Guo, Shiu-Cheung Lung, Mohd Fadhli Hamdan, Mee-Len Chye\",\"doi\":\"10.1016/j.plipres.2022.101156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Lipids participate in diverse biological functions including </span>signal transduction, cellular membrane biogenesis and carbon storage. Following </span><em>de novo</em><span> biosynthesis<span><span> in the plastids, fatty acids (FAs) are transported as acyl-CoA esters to the endoplasmic reticulum where glycerol-3-phosphate undergoes a series of acyl-CoA-dependent </span>acylation </span></span><em>via</em><span> the Kennedy pathway to form triacylglycerols<span> for subsequent assembly into oils. Alternatively, newly synthesized FAs are incorporated into phosphatidylcholine<span> (PC) by a PC:acyl-CoA exchange process defined as “acyl editing”. Acyl-CoA-binding proteins (ACBPs) at various subcellular locations can function in lipid transfer by binding and transporting acyl-CoA esters and maintaining intracellular acyl-CoA pools. Widely distributed in the plant kingdom, ACBPs are found in all eukaryotes and some eubacteria. In both rice and Arabidopsis<span><span><span>, six forms of ACBPs co-exist and are classified into four groups based on their functional domains. Their conserved four-helix structure facilitates interaction with acyl-CoA esters. ACBPs also interact with phospholipids as well as protein partners and function in </span>seed oil regulation, development, pathogen defense and stress responses. Besides the ACBPs, other proteins such as the lipid transfer proteins (LTPs), </span>annexins and lipid droplet-associated proteins are also important lipid-binding proteins. While annexins bind Ca</span></span></span></span><sup>2+</sup><span> and phospholipids, LTPs transport lipid molecules including FAs, acyl-CoA esters and phospholipids.</span></p></div>\",\"PeriodicalId\":20650,\"journal\":{\"name\":\"Progress in lipid research\",\"volume\":\"86 \",\"pages\":\"Article 101156\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in lipid research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016378272200011X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in lipid research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016378272200011X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Interactions between plant lipid-binding proteins and their ligands
Lipids participate in diverse biological functions including signal transduction, cellular membrane biogenesis and carbon storage. Following de novo biosynthesis in the plastids, fatty acids (FAs) are transported as acyl-CoA esters to the endoplasmic reticulum where glycerol-3-phosphate undergoes a series of acyl-CoA-dependent acylation via the Kennedy pathway to form triacylglycerols for subsequent assembly into oils. Alternatively, newly synthesized FAs are incorporated into phosphatidylcholine (PC) by a PC:acyl-CoA exchange process defined as “acyl editing”. Acyl-CoA-binding proteins (ACBPs) at various subcellular locations can function in lipid transfer by binding and transporting acyl-CoA esters and maintaining intracellular acyl-CoA pools. Widely distributed in the plant kingdom, ACBPs are found in all eukaryotes and some eubacteria. In both rice and Arabidopsis, six forms of ACBPs co-exist and are classified into four groups based on their functional domains. Their conserved four-helix structure facilitates interaction with acyl-CoA esters. ACBPs also interact with phospholipids as well as protein partners and function in seed oil regulation, development, pathogen defense and stress responses. Besides the ACBPs, other proteins such as the lipid transfer proteins (LTPs), annexins and lipid droplet-associated proteins are also important lipid-binding proteins. While annexins bind Ca2+ and phospholipids, LTPs transport lipid molecules including FAs, acyl-CoA esters and phospholipids.
期刊介绍:
The significance of lipids as a fundamental category of biological compounds has been widely acknowledged. The utilization of our understanding in the fields of biochemistry, chemistry, and physiology of lipids has continued to grow in biotechnology, the fats and oils industry, and medicine. Moreover, new aspects such as lipid biophysics, particularly related to membranes and lipoproteins, as well as basic research and applications of liposomes, have emerged. To keep up with these advancements, there is a need for a journal that can evaluate recent progress in specific areas and provide a historical perspective on current research. Progress in Lipid Research serves this purpose.