{"title":"Wistar大鼠穿孔通路齿状回(PP-DG)突触空间学习记忆和海马长时程增强的性别差异。","authors":"Samaneh Safari, Nesa Ahmadi, Reihaneh Mohammadkhani, Reza Ghahremani, Maryam Khajvand-Abedeni, Siamak Shahidi, Alireza Komaki, Iraj Salehi, Seyed Asaad Karimi","doi":"10.1186/s12993-021-00184-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recent studies show that gender may have a significant impact on brain functions. However, the reports of sex effects on spatial ability and synaptic plasticity in rodents are divergent and controversial. Here spatial learning and memory was measured in male and female rats by using Morris water maze (MWM) task. Moreover, to assess sex difference in hippocampal synaptic plasticity we examined hippocampal long-term potentiation (LTP) at perforant pathway-dentate gyrus (PP-DG) synapses.</p><p><strong>Results: </strong>In MWM task, male rats outperformed female rats, as they had significantly shorter swim distance and escape latency to find the hidden platform during training days. During spatial reference memory test, female rats spent less time and traveled less distance in the target zone. Male rats also had larger LTP at PP-DG synapses, which was evident in the high magnitude of population spike (PS) potentiation and the field excitatory post synaptic potentials (fEPSP) slope.</p><p><strong>Conclusions: </strong>Taken together, our results suggest that sex differences in the LTP at PP-DG synapses, possibly contribute to the observed sex difference in spatial learning and memory.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"17 1","pages":"9"},"PeriodicalIF":4.7000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8559395/pdf/","citationCount":"3","resultStr":"{\"title\":\"Sex differences in spatial learning and memory and hippocampal long-term potentiation at perforant pathway-dentate gyrus (PP-DG) synapses in Wistar rats.\",\"authors\":\"Samaneh Safari, Nesa Ahmadi, Reihaneh Mohammadkhani, Reza Ghahremani, Maryam Khajvand-Abedeni, Siamak Shahidi, Alireza Komaki, Iraj Salehi, Seyed Asaad Karimi\",\"doi\":\"10.1186/s12993-021-00184-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Recent studies show that gender may have a significant impact on brain functions. However, the reports of sex effects on spatial ability and synaptic plasticity in rodents are divergent and controversial. Here spatial learning and memory was measured in male and female rats by using Morris water maze (MWM) task. Moreover, to assess sex difference in hippocampal synaptic plasticity we examined hippocampal long-term potentiation (LTP) at perforant pathway-dentate gyrus (PP-DG) synapses.</p><p><strong>Results: </strong>In MWM task, male rats outperformed female rats, as they had significantly shorter swim distance and escape latency to find the hidden platform during training days. During spatial reference memory test, female rats spent less time and traveled less distance in the target zone. Male rats also had larger LTP at PP-DG synapses, which was evident in the high magnitude of population spike (PS) potentiation and the field excitatory post synaptic potentials (fEPSP) slope.</p><p><strong>Conclusions: </strong>Taken together, our results suggest that sex differences in the LTP at PP-DG synapses, possibly contribute to the observed sex difference in spatial learning and memory.</p>\",\"PeriodicalId\":8729,\"journal\":{\"name\":\"Behavioral and Brain Functions\",\"volume\":\"17 1\",\"pages\":\"9\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8559395/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral and Brain Functions\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1186/s12993-021-00184-y\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral and Brain Functions","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1186/s12993-021-00184-y","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Sex differences in spatial learning and memory and hippocampal long-term potentiation at perforant pathway-dentate gyrus (PP-DG) synapses in Wistar rats.
Background: Recent studies show that gender may have a significant impact on brain functions. However, the reports of sex effects on spatial ability and synaptic plasticity in rodents are divergent and controversial. Here spatial learning and memory was measured in male and female rats by using Morris water maze (MWM) task. Moreover, to assess sex difference in hippocampal synaptic plasticity we examined hippocampal long-term potentiation (LTP) at perforant pathway-dentate gyrus (PP-DG) synapses.
Results: In MWM task, male rats outperformed female rats, as they had significantly shorter swim distance and escape latency to find the hidden platform during training days. During spatial reference memory test, female rats spent less time and traveled less distance in the target zone. Male rats also had larger LTP at PP-DG synapses, which was evident in the high magnitude of population spike (PS) potentiation and the field excitatory post synaptic potentials (fEPSP) slope.
Conclusions: Taken together, our results suggest that sex differences in the LTP at PP-DG synapses, possibly contribute to the observed sex difference in spatial learning and memory.
期刊介绍:
A well-established journal in the field of behavioral and cognitive neuroscience, Behavioral and Brain Functions welcomes manuscripts which provide insight into the neurobiological mechanisms underlying behavior and brain function, or dysfunction. The journal gives priority to manuscripts that combine both neurobiology and behavior in a non-clinical manner.