时变密度泛函理论中的双重和电荷转移激发。

IF 11.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Neepa T Maitra
{"title":"时变密度泛函理论中的双重和电荷转移激发。","authors":"Neepa T Maitra","doi":"10.1146/annurev-physchem-082720-124933","DOIUrl":null,"url":null,"abstract":"<p><p>Time-dependent density functional theory has emerged as a method of choice for calculations of spectra and response properties in physics, chemistry, and biology, with its system-size scaling enabling computations on systems much larger than otherwise possible. While increasingly complex and interesting systems have been successfully tackled with relatively simple functional approximations, there has also been increasing awareness that these functionals tend to fail for certain classes of approximations. Here I review the fundamental challenges the approximate functionals have in describing double excitations and charge-transfer excitations, which are two of the most common impediments for the theory to be applied in a black-box way. At the same time, I describe the progress made in recent decades in developing functional approximations that give useful predictions for these excitations.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Double and Charge-Transfer Excitations in Time-Dependent Density Functional Theory.\",\"authors\":\"Neepa T Maitra\",\"doi\":\"10.1146/annurev-physchem-082720-124933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Time-dependent density functional theory has emerged as a method of choice for calculations of spectra and response properties in physics, chemistry, and biology, with its system-size scaling enabling computations on systems much larger than otherwise possible. While increasingly complex and interesting systems have been successfully tackled with relatively simple functional approximations, there has also been increasing awareness that these functionals tend to fail for certain classes of approximations. Here I review the fundamental challenges the approximate functionals have in describing double excitations and charge-transfer excitations, which are two of the most common impediments for the theory to be applied in a black-box way. At the same time, I describe the progress made in recent decades in developing functional approximations that give useful predictions for these excitations.</p>\",\"PeriodicalId\":7967,\"journal\":{\"name\":\"Annual review of physical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physchem-082720-124933\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-082720-124933","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 18

摘要

依赖于时间的密度泛函理论已经成为物理学、化学和生物学中光谱和响应特性计算的一种选择方法,它的系统尺寸缩放使计算能够在比其他方法更大的系统上进行。虽然越来越复杂和有趣的系统已经用相对简单的函数近似成功地解决了,但也有越来越多的人意识到,这些函数对于某些类别的近似往往失败。在这里,我回顾了近似泛函在描述双重激发和电荷转移激发方面所面临的基本挑战,这是该理论在黑盒方式中应用的两个最常见的障碍。同时,我描述了近几十年来在开发函数近似方面取得的进展,这些近似为这些激励提供了有用的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double and Charge-Transfer Excitations in Time-Dependent Density Functional Theory.

Time-dependent density functional theory has emerged as a method of choice for calculations of spectra and response properties in physics, chemistry, and biology, with its system-size scaling enabling computations on systems much larger than otherwise possible. While increasingly complex and interesting systems have been successfully tackled with relatively simple functional approximations, there has also been increasing awareness that these functionals tend to fail for certain classes of approximations. Here I review the fundamental challenges the approximate functionals have in describing double excitations and charge-transfer excitations, which are two of the most common impediments for the theory to be applied in a black-box way. At the same time, I describe the progress made in recent decades in developing functional approximations that give useful predictions for these excitations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.00
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信