二维欧拉方程弱解压力的边界正则性。

Claude W Bardos, Edriss S Titi
{"title":"二维欧拉方程弱解压力的边界正则性。","authors":"Claude W Bardos,&nbsp;Edriss S Titi","doi":"10.1098/rsta.2021.0073","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this article is to give a complete proof of a [Formula: see text] regularity result for the pressure for weak solutions of the two-dimensional 'incompressible Euler equations' when the fluid velocity enjoys the same type of regularity in a compact simply connected domain with [Formula: see text] boundary. To accomplish our result, we realize that it is compulsory to introduce a new weak formulation for the boundary condition of the pressure, which is consistent with, and equivalent to, that of classical solutions. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20210073"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"<i>C</i><sup>0,<i>α</i></sup> boundary regularity for the pressure in weak solutions of the 2<i>d</i> Euler equations.\",\"authors\":\"Claude W Bardos,&nbsp;Edriss S Titi\",\"doi\":\"10.1098/rsta.2021.0073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this article is to give a complete proof of a [Formula: see text] regularity result for the pressure for weak solutions of the two-dimensional 'incompressible Euler equations' when the fluid velocity enjoys the same type of regularity in a compact simply connected domain with [Formula: see text] boundary. To accomplish our result, we realize that it is compulsory to introduce a new weak formulation for the boundary condition of the pressure, which is consistent with, and equivalent to, that of classical solutions. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.</p>\",\"PeriodicalId\":286094,\"journal\":{\"name\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"volume\":\" \",\"pages\":\"20210073\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2021.0073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文的目的是完整地证明二维不可压缩欧拉方程弱解在具有边界的紧单连通域中流体速度具有相同类型的正则性时压力的正则性结果。为了完成我们的结果,我们意识到必须引入一个新的弱公式来表示压力的边界条件,该公式与经典解的边界条件一致并等价。这篇文章是主题“攀登湍流大厦(第一部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
C0,α boundary regularity for the pressure in weak solutions of the 2d Euler equations.

The purpose of this article is to give a complete proof of a [Formula: see text] regularity result for the pressure for weak solutions of the two-dimensional 'incompressible Euler equations' when the fluid velocity enjoys the same type of regularity in a compact simply connected domain with [Formula: see text] boundary. To accomplish our result, we realize that it is compulsory to introduce a new weak formulation for the boundary condition of the pressure, which is consistent with, and equivalent to, that of classical solutions. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信