单细胞转录组分析定义小鼠门牙髓间充质间质细胞

IF 1 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY
Dashzeveg Bayarsaihan , Badam Enkhmandakh , Anushree Vijaykumar , Paul Robson , Mina Mina
{"title":"单细胞转录组分析定义小鼠门牙髓间充质间质细胞","authors":"Dashzeveg Bayarsaihan ,&nbsp;Badam Enkhmandakh ,&nbsp;Anushree Vijaykumar ,&nbsp;Paul Robson ,&nbsp;Mina Mina","doi":"10.1016/j.gep.2021.119228","DOIUrl":null,"url":null,"abstract":"<div><p><span>The dental pulp is known to be highly heterogenous, comprising distinct cell types including mesenchymal stromal cells<span> (MSCs), which represent neural-crest-derived cells with the ability to differentiate into multiple cell lineages<span><span><span>. However, the cellular heterogeneity and the transcriptome signature of different cell clusters within the dental pulp remain to be established. To better understand discrete cell types, we applied a single-cell </span>RNA sequencing<span> strategy to establish the RNA<span> expression profiles of individual dental pulp cells from 5- to 6-day-old mouse incisors. Our study revealed distinct subclasses of cells representing osteoblast, odontoblast, endothelial, pancreatic, neuronal, immune, pericyte and </span></span></span>ameloblast lineages. Collectively, our research demonstrates the complexity and diversity of cell subclasses within the incisor dental pulp, thus providing a foundation for uncovering the </span></span></span>molecular processes that govern cell fate decisions and lineage commitment in dental pulp-derived MSCs.</p></div>","PeriodicalId":55598,"journal":{"name":"Gene Expression Patterns","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Single-cell transcriptome analysis defines mesenchymal stromal cells in the mouse incisor dental pulp\",\"authors\":\"Dashzeveg Bayarsaihan ,&nbsp;Badam Enkhmandakh ,&nbsp;Anushree Vijaykumar ,&nbsp;Paul Robson ,&nbsp;Mina Mina\",\"doi\":\"10.1016/j.gep.2021.119228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The dental pulp is known to be highly heterogenous, comprising distinct cell types including mesenchymal stromal cells<span> (MSCs), which represent neural-crest-derived cells with the ability to differentiate into multiple cell lineages<span><span><span>. However, the cellular heterogeneity and the transcriptome signature of different cell clusters within the dental pulp remain to be established. To better understand discrete cell types, we applied a single-cell </span>RNA sequencing<span> strategy to establish the RNA<span> expression profiles of individual dental pulp cells from 5- to 6-day-old mouse incisors. Our study revealed distinct subclasses of cells representing osteoblast, odontoblast, endothelial, pancreatic, neuronal, immune, pericyte and </span></span></span>ameloblast lineages. Collectively, our research demonstrates the complexity and diversity of cell subclasses within the incisor dental pulp, thus providing a foundation for uncovering the </span></span></span>molecular processes that govern cell fate decisions and lineage commitment in dental pulp-derived MSCs.</p></div>\",\"PeriodicalId\":55598,\"journal\":{\"name\":\"Gene Expression Patterns\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene Expression Patterns\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567133X21000636\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Expression Patterns","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567133X21000636","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 7

摘要

众所周知,牙髓是高度异质性的,由不同的细胞类型组成,包括间充质间质细胞(MSCs),它代表神经嵴来源的细胞,具有分化成多种细胞系的能力。然而,牙髓内不同细胞群的细胞异质性和转录组特征仍有待确定。为了更好地了解离散细胞类型,我们应用单细胞RNA测序策略建立了5至6日龄小鼠门牙单个牙髓细胞的RNA表达谱。我们的研究揭示了不同的细胞亚类,代表了成骨细胞、成牙细胞、内皮细胞、胰腺细胞、神经元细胞、免疫细胞、周细胞和成釉细胞谱系。总的来说,我们的研究证明了切牙牙髓内细胞亚类的复杂性和多样性,从而为揭示牙髓源性间充质干细胞中控制细胞命运决定和谱系承诺的分子过程提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-cell transcriptome analysis defines mesenchymal stromal cells in the mouse incisor dental pulp

The dental pulp is known to be highly heterogenous, comprising distinct cell types including mesenchymal stromal cells (MSCs), which represent neural-crest-derived cells with the ability to differentiate into multiple cell lineages. However, the cellular heterogeneity and the transcriptome signature of different cell clusters within the dental pulp remain to be established. To better understand discrete cell types, we applied a single-cell RNA sequencing strategy to establish the RNA expression profiles of individual dental pulp cells from 5- to 6-day-old mouse incisors. Our study revealed distinct subclasses of cells representing osteoblast, odontoblast, endothelial, pancreatic, neuronal, immune, pericyte and ameloblast lineages. Collectively, our research demonstrates the complexity and diversity of cell subclasses within the incisor dental pulp, thus providing a foundation for uncovering the molecular processes that govern cell fate decisions and lineage commitment in dental pulp-derived MSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gene Expression Patterns
Gene Expression Patterns 生物-发育生物学
CiteScore
2.30
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍: Gene Expression Patterns is devoted to the rapid publication of high quality studies of gene expression in development. Studies using cell culture are also suitable if clearly relevant to development, e.g., analysis of key regulatory genes or of gene sets in the maintenance or differentiation of stem cells. Key areas of interest include: -In-situ studies such as expression patterns of important or interesting genes at all levels, including transcription and protein expression -Temporal studies of large gene sets during development -Transgenic studies to study cell lineage in tissue formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信