胃饥饿素通过减少M1小胶质细胞/巨噬细胞减少大鼠脑缺血损伤。

IF 2.1 4区 生物学 Q4 CELL BIOLOGY
Rong Tian, Gengsheng Mao
{"title":"胃饥饿素通过减少M1小胶质细胞/巨噬细胞减少大鼠脑缺血损伤。","authors":"Rong Tian,&nbsp;Gengsheng Mao","doi":"10.4081/ejh.2022.3350","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to investigate the effect of Ghrelin on the polarization of microglia/ macrophages after cerebral ischemia (CI) in rats. 60 wild-type SD rats were randomly divided into sham group, CI group, CI+Ghrelin group, 20 rats in each group. The modified Longa suture method was used to establish the middle cerebral artery occlusion (MCAO) model in rats. Before surgery, Ghrelin was injected subcutaneously (100μg/kg, twice a day) for 4 consecutive weeks. After modeling, neurological function scores were performed with three behavioral experiments: mNSS score, Corner test, and Rotarod test, to evaluate the recovery of neurological function after Ghrelin treatment. At the same time, the brain tissues were collected and stained with 2,3,5-triphenyltetrazolium chloride (TTC) to detect the cerebral infarct volume. RT-qPCR was used to detect the expression of TNF-α and IL-1β in the ischemic brain tissue, and the TUNEL staining was used to detect the apoptosis of brain tissue. Flow cytometry was used to detect the percentage of M1 type microglia/macrophages which were isolated by trypsin digestion of fresh cerebral cortex. Then, the Western blotting and immunofluorescence method were used to detect the phosphorylation level of AKT (P-AKT) and AKT. Compared with the CI group, the neurological function of the rats in the CI+Ghrelin group was dramatically improved, and the cerebral infarction area was dramatically reduced. At the same time, the expression of TNF-α and IL-1β in the ischemic brain tissue of rats in the CI+Ghrelin group decreased, and the apoptotic cells in the brain tissue also decreased. Compared with the CI treatment group, the activation of M1 microglia/macrophages in the cortex of the ischemic side of the infarct and the peri-infarct area in the CI+Ghrelin group was dramatically inhibited. At the same time, the ratio of P-AKT/AKT of the brain tissue in the CI+Ghrelin group was dramatically higher than that of the CI group. In the rat cerebral ischemia model, Ghrelin can promote the repair of brain damage and the recovery of neurological function after ischemia. Its mechanism may be related to activating AKT to selectively reduce M1 microglia/macrophages, reducing inflammation and cell apoptosis in brain tissue.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"66 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/21/45/ejh-66-1-3350.PMC8764466.pdf","citationCount":"3","resultStr":"{\"title\":\"Ghrelin reduces cerebral ischemic injury in rats by reducing M1 microglia/macrophages.\",\"authors\":\"Rong Tian,&nbsp;Gengsheng Mao\",\"doi\":\"10.4081/ejh.2022.3350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to investigate the effect of Ghrelin on the polarization of microglia/ macrophages after cerebral ischemia (CI) in rats. 60 wild-type SD rats were randomly divided into sham group, CI group, CI+Ghrelin group, 20 rats in each group. The modified Longa suture method was used to establish the middle cerebral artery occlusion (MCAO) model in rats. Before surgery, Ghrelin was injected subcutaneously (100μg/kg, twice a day) for 4 consecutive weeks. After modeling, neurological function scores were performed with three behavioral experiments: mNSS score, Corner test, and Rotarod test, to evaluate the recovery of neurological function after Ghrelin treatment. At the same time, the brain tissues were collected and stained with 2,3,5-triphenyltetrazolium chloride (TTC) to detect the cerebral infarct volume. RT-qPCR was used to detect the expression of TNF-α and IL-1β in the ischemic brain tissue, and the TUNEL staining was used to detect the apoptosis of brain tissue. Flow cytometry was used to detect the percentage of M1 type microglia/macrophages which were isolated by trypsin digestion of fresh cerebral cortex. Then, the Western blotting and immunofluorescence method were used to detect the phosphorylation level of AKT (P-AKT) and AKT. Compared with the CI group, the neurological function of the rats in the CI+Ghrelin group was dramatically improved, and the cerebral infarction area was dramatically reduced. At the same time, the expression of TNF-α and IL-1β in the ischemic brain tissue of rats in the CI+Ghrelin group decreased, and the apoptotic cells in the brain tissue also decreased. Compared with the CI treatment group, the activation of M1 microglia/macrophages in the cortex of the ischemic side of the infarct and the peri-infarct area in the CI+Ghrelin group was dramatically inhibited. At the same time, the ratio of P-AKT/AKT of the brain tissue in the CI+Ghrelin group was dramatically higher than that of the CI group. In the rat cerebral ischemia model, Ghrelin can promote the repair of brain damage and the recovery of neurological function after ischemia. Its mechanism may be related to activating AKT to selectively reduce M1 microglia/macrophages, reducing inflammation and cell apoptosis in brain tissue.</p>\",\"PeriodicalId\":50487,\"journal\":{\"name\":\"European Journal of Histochemistry\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/21/45/ejh-66-1-3350.PMC8764466.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Histochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4081/ejh.2022.3350\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Histochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4081/ejh.2022.3350","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

本研究旨在探讨Ghrelin对大鼠脑缺血后小胶质细胞/巨噬细胞极化的影响。将60只SD野生型大鼠随机分为sham组、CI组、CI+Ghrelin组,每组20只。采用改良龙骨缝合法建立大鼠大脑中动脉闭塞(MCAO)模型。术前皮下注射Ghrelin (100μg/kg,每天2次),连续4周。造模后,采用mNSS评分、Corner测试、Rotarod测试三种行为实验进行神经功能评分,评价Ghrelin治疗后神经功能的恢复情况。同时采集大鼠脑组织,用2,3,5-三苯四氮唑(TTC)染色检测脑梗死体积。采用RT-qPCR检测缺血脑组织中TNF-α和IL-1β的表达,TUNEL染色检测脑组织凋亡情况。流式细胞术检测新鲜大脑皮层胰蛋白酶消化分离的M1型小胶质细胞/巨噬细胞的百分比。然后采用Western blotting和免疫荧光法检测AKT (P-AKT)和AKT的磷酸化水平。与CI组比较,CI+Ghrelin组大鼠神经功能明显改善,脑梗死面积明显缩小。同时,CI+Ghrelin组大鼠缺血脑组织中TNF-α和IL-1β的表达降低,脑组织中凋亡细胞也减少。与CI治疗组相比,CI+Ghrelin组梗死灶缺血侧皮质及梗死周围区M1小胶质细胞/巨噬细胞的活化明显受到抑制。同时,CI+Ghrelin组脑组织P-AKT/AKT比值显著高于CI组。在大鼠脑缺血模型中,胃饥饿素能促进脑损伤的修复和缺血后神经功能的恢复。其机制可能与激活AKT选择性减少M1小胶质细胞/巨噬细胞,减少脑组织炎症和细胞凋亡有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ghrelin reduces cerebral ischemic injury in rats by reducing M1 microglia/macrophages.

Ghrelin reduces cerebral ischemic injury in rats by reducing M1 microglia/macrophages.

Ghrelin reduces cerebral ischemic injury in rats by reducing M1 microglia/macrophages.

Ghrelin reduces cerebral ischemic injury in rats by reducing M1 microglia/macrophages.

The purpose of this study was to investigate the effect of Ghrelin on the polarization of microglia/ macrophages after cerebral ischemia (CI) in rats. 60 wild-type SD rats were randomly divided into sham group, CI group, CI+Ghrelin group, 20 rats in each group. The modified Longa suture method was used to establish the middle cerebral artery occlusion (MCAO) model in rats. Before surgery, Ghrelin was injected subcutaneously (100μg/kg, twice a day) for 4 consecutive weeks. After modeling, neurological function scores were performed with three behavioral experiments: mNSS score, Corner test, and Rotarod test, to evaluate the recovery of neurological function after Ghrelin treatment. At the same time, the brain tissues were collected and stained with 2,3,5-triphenyltetrazolium chloride (TTC) to detect the cerebral infarct volume. RT-qPCR was used to detect the expression of TNF-α and IL-1β in the ischemic brain tissue, and the TUNEL staining was used to detect the apoptosis of brain tissue. Flow cytometry was used to detect the percentage of M1 type microglia/macrophages which were isolated by trypsin digestion of fresh cerebral cortex. Then, the Western blotting and immunofluorescence method were used to detect the phosphorylation level of AKT (P-AKT) and AKT. Compared with the CI group, the neurological function of the rats in the CI+Ghrelin group was dramatically improved, and the cerebral infarction area was dramatically reduced. At the same time, the expression of TNF-α and IL-1β in the ischemic brain tissue of rats in the CI+Ghrelin group decreased, and the apoptotic cells in the brain tissue also decreased. Compared with the CI treatment group, the activation of M1 microglia/macrophages in the cortex of the ischemic side of the infarct and the peri-infarct area in the CI+Ghrelin group was dramatically inhibited. At the same time, the ratio of P-AKT/AKT of the brain tissue in the CI+Ghrelin group was dramatically higher than that of the CI group. In the rat cerebral ischemia model, Ghrelin can promote the repair of brain damage and the recovery of neurological function after ischemia. Its mechanism may be related to activating AKT to selectively reduce M1 microglia/macrophages, reducing inflammation and cell apoptosis in brain tissue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Histochemistry
European Journal of Histochemistry 生物-细胞生物学
CiteScore
3.70
自引率
5.00%
发文量
47
审稿时长
3 months
期刊介绍: The Journal publishes original papers concerning investigations by histochemical and immunohistochemical methods, and performed with the aid of light, super-resolution and electron microscopy, cytometry and imaging techniques. Coverage extends to: functional cell and tissue biology in animals and plants; cell differentiation and death; cell-cell interaction and molecular trafficking; biology of cell development and senescence; nerve and muscle cell biology; cellular basis of diseases. The histochemical approach is nowadays essentially aimed at locating molecules in the very place where they exert their biological roles, and at describing dynamically specific chemical activities in living cells. Basic research on cell functional organization is essential for understanding the mechanisms underlying major biological processes such as differentiation, the control of tissue homeostasis, and the regulation of normal and tumor cell growth. Even more than in the past, the European Journal of Histochemistry, as a journal of functional cytology, represents the venue where cell scientists may present and discuss their original results, technical improvements and theories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信