{"title":"问答中多跳推理的神经方法实验研究。","authors":"Patricia Jiménez, Rafael Corchuelo","doi":"10.1142/S0129065722500113","DOIUrl":null,"url":null,"abstract":"<p><p>Question answering aims at computing the answer to a question given a context with facts. Many proposals focus on questions whose answer is explicit in the context; lately, there has been an increasing interest in questions whose answer is not explicit and requires multi-hop inference to be computed. Our analysis of the literature reveals that there is a seminal proposal with increasingly complex follow-ups. Unfortunately, they were presented without an extensive study of their hyper-parameters, the experimental studies focused exclusively on English, and no statistical analysis to sustain the conclusions was ever performed. In this paper, we report on our experience devising a very simple neural approach to address the problem, on our extensive grid search over the space of hyper-parameters, on the results attained with English, Spanish, Hindi, and Portuguese, and sustain our conclusions with statistically sound analyses. Our findings prove that it is possible to beat many of the proposals in the literature with a very simple approach that was likely overlooked due to the difficulty to perform an extensive grid search, that the language does not have a statistically significant impact on the results, and that the empirical differences found among some existing proposals are not statistically significant.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"32 4","pages":"2250011"},"PeriodicalIF":6.6000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Experimental Study of Neural Approaches to Multi-Hop Inference in Question Answering.\",\"authors\":\"Patricia Jiménez, Rafael Corchuelo\",\"doi\":\"10.1142/S0129065722500113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Question answering aims at computing the answer to a question given a context with facts. Many proposals focus on questions whose answer is explicit in the context; lately, there has been an increasing interest in questions whose answer is not explicit and requires multi-hop inference to be computed. Our analysis of the literature reveals that there is a seminal proposal with increasingly complex follow-ups. Unfortunately, they were presented without an extensive study of their hyper-parameters, the experimental studies focused exclusively on English, and no statistical analysis to sustain the conclusions was ever performed. In this paper, we report on our experience devising a very simple neural approach to address the problem, on our extensive grid search over the space of hyper-parameters, on the results attained with English, Spanish, Hindi, and Portuguese, and sustain our conclusions with statistically sound analyses. Our findings prove that it is possible to beat many of the proposals in the literature with a very simple approach that was likely overlooked due to the difficulty to perform an extensive grid search, that the language does not have a statistically significant impact on the results, and that the empirical differences found among some existing proposals are not statistically significant.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":\"32 4\",\"pages\":\"2250011\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065722500113\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500113","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An Experimental Study of Neural Approaches to Multi-Hop Inference in Question Answering.
Question answering aims at computing the answer to a question given a context with facts. Many proposals focus on questions whose answer is explicit in the context; lately, there has been an increasing interest in questions whose answer is not explicit and requires multi-hop inference to be computed. Our analysis of the literature reveals that there is a seminal proposal with increasingly complex follow-ups. Unfortunately, they were presented without an extensive study of their hyper-parameters, the experimental studies focused exclusively on English, and no statistical analysis to sustain the conclusions was ever performed. In this paper, we report on our experience devising a very simple neural approach to address the problem, on our extensive grid search over the space of hyper-parameters, on the results attained with English, Spanish, Hindi, and Portuguese, and sustain our conclusions with statistically sound analyses. Our findings prove that it is possible to beat many of the proposals in the literature with a very simple approach that was likely overlooked due to the difficulty to perform an extensive grid search, that the language does not have a statistically significant impact on the results, and that the empirical differences found among some existing proposals are not statistically significant.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.