用于骨组织工程的3d打印海藻酸羟基磷灰石气凝胶支架

IF 8.1 1区 工程技术 Q1 MATERIALS SCIENCE, BIOMATERIALS
Ana Iglesias-Mejuto, Carlos A. García-González
{"title":"用于骨组织工程的3d打印海藻酸羟基磷灰石气凝胶支架","authors":"Ana Iglesias-Mejuto,&nbsp;Carlos A. García-González","doi":"10.1016/j.msec.2021.112525","DOIUrl":null,"url":null,"abstract":"<div><p>3D-printing technology allows the automated and reproducible manufacturing of functional structures for tissue engineering with customized geometries and compositions by depositing materials layer-by-layer with high precision. For these purposes, the production of bioactive gel-based 3D-scaffolds made of biocompatible materials with well-defined internal structure comprising a dual (mesoporous and macroporous) and highly interconnected porosity is essential. In this work, aerogel scaffolds for bone regeneration purposes were obtained by an innovative strategy that combines the 3D-printing of alginate-hydroxyapatite (HA) hydrogels and the supercritical CO<sub>2</sub> drying of the gels. BET and SEM analyses were performed to assess the textural parameters of the obtained aerogel scaffolds and the dimensional accuracy to the original computer-aided design (CAD) design was also evaluated. The biological characterization of the aerogel scaffolds was also carried out regarding cell viability, adhesion and migration capacity. The obtained alginate-HA aerogel scaffolds were highly porous, biocompatible, with high fidelity to the CAD-pattern and also allowed the attachment and proliferation of mesenchymal stem cells (MSCs). An enhancement of the fibroblast migration toward the damaged area was observed in the presence of the aerogel formulations tested, which is positive in terms of bone regeneration.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":"131 ","pages":"Article 112525"},"PeriodicalIF":8.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928493121006652/pdfft?md5=c3085a9a394e9d5fde3431b0a8b75de1&pid=1-s2.0-S0928493121006652-main.pdf","citationCount":"52","resultStr":"{\"title\":\"3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering\",\"authors\":\"Ana Iglesias-Mejuto,&nbsp;Carlos A. García-González\",\"doi\":\"10.1016/j.msec.2021.112525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>3D-printing technology allows the automated and reproducible manufacturing of functional structures for tissue engineering with customized geometries and compositions by depositing materials layer-by-layer with high precision. For these purposes, the production of bioactive gel-based 3D-scaffolds made of biocompatible materials with well-defined internal structure comprising a dual (mesoporous and macroporous) and highly interconnected porosity is essential. In this work, aerogel scaffolds for bone regeneration purposes were obtained by an innovative strategy that combines the 3D-printing of alginate-hydroxyapatite (HA) hydrogels and the supercritical CO<sub>2</sub> drying of the gels. BET and SEM analyses were performed to assess the textural parameters of the obtained aerogel scaffolds and the dimensional accuracy to the original computer-aided design (CAD) design was also evaluated. The biological characterization of the aerogel scaffolds was also carried out regarding cell viability, adhesion and migration capacity. The obtained alginate-HA aerogel scaffolds were highly porous, biocompatible, with high fidelity to the CAD-pattern and also allowed the attachment and proliferation of mesenchymal stem cells (MSCs). An enhancement of the fibroblast migration toward the damaged area was observed in the presence of the aerogel formulations tested, which is positive in terms of bone regeneration.</p></div>\",\"PeriodicalId\":18212,\"journal\":{\"name\":\"Materials science & engineering. C, Materials for biological applications\",\"volume\":\"131 \",\"pages\":\"Article 112525\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0928493121006652/pdfft?md5=c3085a9a394e9d5fde3431b0a8b75de1&pid=1-s2.0-S0928493121006652-main.pdf\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials science & engineering. C, Materials for biological applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928493121006652\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928493121006652","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 52

摘要

3d打印技术可以通过高精度逐层沉积材料,实现组织工程功能结构的自动化和可重复制造,并具有定制的几何形状和成分。出于这些目的,生物活性凝胶基3d支架的生产是必不可少的,该支架由生物相容性材料制成,具有明确的内部结构,包括双重(介孔和大孔)和高度互连的孔隙度。在这项工作中,通过一种创新的策略,结合海藻酸羟基磷灰石(HA)水凝胶的3d打印和凝胶的超临界CO2干燥,获得了用于骨再生目的的气凝胶支架。通过BET和SEM分析评价了所制备的气凝胶支架的结构参数,并对其与原CAD设计的尺寸精度进行了评价。对气凝胶支架的细胞活力、粘附力和迁移能力进行了生物学表征。所获得的藻酸盐-透明质酸气凝胶支架具有高多孔性、生物相容性和cad模式的高保真度,并且还允许间充质干细胞(MSCs)的附着和增殖。在测试的气凝胶配方中,观察到成纤维细胞向受损区域的迁移增强,这在骨再生方面是积极的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering

3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering

3D-printing technology allows the automated and reproducible manufacturing of functional structures for tissue engineering with customized geometries and compositions by depositing materials layer-by-layer with high precision. For these purposes, the production of bioactive gel-based 3D-scaffolds made of biocompatible materials with well-defined internal structure comprising a dual (mesoporous and macroporous) and highly interconnected porosity is essential. In this work, aerogel scaffolds for bone regeneration purposes were obtained by an innovative strategy that combines the 3D-printing of alginate-hydroxyapatite (HA) hydrogels and the supercritical CO2 drying of the gels. BET and SEM analyses were performed to assess the textural parameters of the obtained aerogel scaffolds and the dimensional accuracy to the original computer-aided design (CAD) design was also evaluated. The biological characterization of the aerogel scaffolds was also carried out regarding cell viability, adhesion and migration capacity. The obtained alginate-HA aerogel scaffolds were highly porous, biocompatible, with high fidelity to the CAD-pattern and also allowed the attachment and proliferation of mesenchymal stem cells (MSCs). An enhancement of the fibroblast migration toward the damaged area was observed in the presence of the aerogel formulations tested, which is positive in terms of bone regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
28
审稿时长
3.3 months
期刊介绍: Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信