机械可调的光交联生物墨水用于生物3D打印结构中MSCs的成骨分化

IF 8.1 1区 工程技术 Q1 MATERIALS SCIENCE, BIOMATERIALS
Meenakshi Kamaraj , Gaddamedi Sreevani , Ganesan Prabusankar , Subha Narayan Rath
{"title":"机械可调的光交联生物墨水用于生物3D打印结构中MSCs的成骨分化","authors":"Meenakshi Kamaraj ,&nbsp;Gaddamedi Sreevani ,&nbsp;Ganesan Prabusankar ,&nbsp;Subha Narayan Rath","doi":"10.1016/j.msec.2021.112478","DOIUrl":null,"url":null,"abstract":"<div><p>3D bioprinting technique renders a plausible solution to tissue engineering applications, mainly bone tissue regeneration, which could provide the microenvironment with desired physical, chemical, and mechanical properties. However, the mechanical and structural stability of current natural polymers is a critical issue in the fabrication of bone tissue-engineered scaffolds. To overcome these issues, we have developed 3D bioprintable semi-synthetic polymers derived from natural (sodium alginate, A) and synthetic (polyethylene glycol, PEG) biopolymers. In order to enhance the cross-linking properties and biocompatibility, we have functionalized these polymers with acrylate and methacrylate chemical moieties. These selected combination of natural and synthetic polymers improved the mechanical strength due to the synergistic effect of covalent as well as ionic bond formation in the hydrogel system, which is evident from the tested tensile data. Further, the feasibility of 3D bioprinting of acrylate and methacrylate functionalized PEG and hydrogels have been tested for the biocompatibility of the fabricated structures with human umbilical cord mesenchymal stem cells (UMSCs). Further, these bioprinted scaffolds were investigated for osteogenic differentiation of UMSCs in two types of culture conditions: namely, i) with osteoinduction media (with OIM), ii) without osteoinduction media (w/o OIM). We have examined the osteoinductivity of scaffolds with the activity of alkaline phosphatase (ALP) content, and significant changes in the ALP activity was observed with the stiffness of developed materials. The extent osteogenic differentiation was observed by alizarin red staining and reverse transcription PCR analysis. Elevated levels of ALP, RUNX2 and COL1 gene expression has been observed in without OIM samples on week 1 and week 3. Further, our study showed that the synthesized alginate methacrylate (AMA) without osteoinduction supplement with young's modulus of 0.34 MPa has a significant difference in ALP quantity and gene expression over the other reported literature. Thus, this work plays a pivotal role in the development of 3D bioprintable and photo-cross-linkable hydrogels in osteogenic differentiation of mesenchymal stem cells.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":"131 ","pages":"Article 112478"},"PeriodicalIF":8.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928493121006184/pdfft?md5=e83de26b8588c3ae89bb73f1745c7b80&pid=1-s2.0-S0928493121006184-main.pdf","citationCount":"11","resultStr":"{\"title\":\"Mechanically tunable photo-cross-linkable bioinks for osteogenic differentiation of MSCs in 3D bioprinted constructs\",\"authors\":\"Meenakshi Kamaraj ,&nbsp;Gaddamedi Sreevani ,&nbsp;Ganesan Prabusankar ,&nbsp;Subha Narayan Rath\",\"doi\":\"10.1016/j.msec.2021.112478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>3D bioprinting technique renders a plausible solution to tissue engineering applications, mainly bone tissue regeneration, which could provide the microenvironment with desired physical, chemical, and mechanical properties. However, the mechanical and structural stability of current natural polymers is a critical issue in the fabrication of bone tissue-engineered scaffolds. To overcome these issues, we have developed 3D bioprintable semi-synthetic polymers derived from natural (sodium alginate, A) and synthetic (polyethylene glycol, PEG) biopolymers. In order to enhance the cross-linking properties and biocompatibility, we have functionalized these polymers with acrylate and methacrylate chemical moieties. These selected combination of natural and synthetic polymers improved the mechanical strength due to the synergistic effect of covalent as well as ionic bond formation in the hydrogel system, which is evident from the tested tensile data. Further, the feasibility of 3D bioprinting of acrylate and methacrylate functionalized PEG and hydrogels have been tested for the biocompatibility of the fabricated structures with human umbilical cord mesenchymal stem cells (UMSCs). Further, these bioprinted scaffolds were investigated for osteogenic differentiation of UMSCs in two types of culture conditions: namely, i) with osteoinduction media (with OIM), ii) without osteoinduction media (w/o OIM). We have examined the osteoinductivity of scaffolds with the activity of alkaline phosphatase (ALP) content, and significant changes in the ALP activity was observed with the stiffness of developed materials. The extent osteogenic differentiation was observed by alizarin red staining and reverse transcription PCR analysis. Elevated levels of ALP, RUNX2 and COL1 gene expression has been observed in without OIM samples on week 1 and week 3. Further, our study showed that the synthesized alginate methacrylate (AMA) without osteoinduction supplement with young's modulus of 0.34 MPa has a significant difference in ALP quantity and gene expression over the other reported literature. Thus, this work plays a pivotal role in the development of 3D bioprintable and photo-cross-linkable hydrogels in osteogenic differentiation of mesenchymal stem cells.</p></div>\",\"PeriodicalId\":18212,\"journal\":{\"name\":\"Materials science & engineering. C, Materials for biological applications\",\"volume\":\"131 \",\"pages\":\"Article 112478\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0928493121006184/pdfft?md5=e83de26b8588c3ae89bb73f1745c7b80&pid=1-s2.0-S0928493121006184-main.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials science & engineering. C, Materials for biological applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928493121006184\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928493121006184","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 11

摘要

生物3D打印技术为组织工程应用提供了一个可行的解决方案,主要是骨组织再生,它可以为微环境提供所需的物理、化学和机械性能。然而,目前天然聚合物的力学和结构稳定性是骨组织工程支架制造的关键问题。为了克服这些问题,我们开发了由天然(海藻酸钠,A)和合成(聚乙二醇,PEG)生物聚合物衍生的3D生物打印半合成聚合物。为了提高聚合物的交联性能和生物相容性,我们用丙烯酸酯和甲基丙烯酸酯进行了功能化。这些选择的天然和合成聚合物的组合由于共价和离子键在水凝胶体系中形成的协同作用而提高了机械强度,这从测试的拉伸数据中可以明显看出。此外,对丙烯酸酯和甲基丙烯酸酯功能化PEG和水凝胶的3D生物打印的可行性进行了测试,以确定所制备的结构与人脐带间充质干细胞(UMSCs)的生物相容性。此外,这些生物打印支架在两种培养条件下研究了UMSCs的成骨分化:即i)骨诱导培养基(含OIM), ii)无骨诱导培养基(无OIM)。我们用碱性磷酸酶(ALP)含量检测了支架的成骨性,ALP活性随材料刚度的变化而发生显著变化。茜素红染色和反转录PCR分析观察成骨分化程度。在第1周和第3周,在没有OIM的样品中观察到ALP, RUNX2和COL1基因表达水平升高。此外,我们的研究表明,合成的不添加骨诱导剂的藻酸盐甲基丙烯酸酯(AMA),杨氏模量为0.34 MPa,在ALP数量和基因表达方面与其他文献报道有显著差异。因此,这项工作在生物3D打印和光交联水凝胶在间充质干细胞成骨分化中的发展中起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanically tunable photo-cross-linkable bioinks for osteogenic differentiation of MSCs in 3D bioprinted constructs

Mechanically tunable photo-cross-linkable bioinks for osteogenic differentiation of MSCs in 3D bioprinted constructs

3D bioprinting technique renders a plausible solution to tissue engineering applications, mainly bone tissue regeneration, which could provide the microenvironment with desired physical, chemical, and mechanical properties. However, the mechanical and structural stability of current natural polymers is a critical issue in the fabrication of bone tissue-engineered scaffolds. To overcome these issues, we have developed 3D bioprintable semi-synthetic polymers derived from natural (sodium alginate, A) and synthetic (polyethylene glycol, PEG) biopolymers. In order to enhance the cross-linking properties and biocompatibility, we have functionalized these polymers with acrylate and methacrylate chemical moieties. These selected combination of natural and synthetic polymers improved the mechanical strength due to the synergistic effect of covalent as well as ionic bond formation in the hydrogel system, which is evident from the tested tensile data. Further, the feasibility of 3D bioprinting of acrylate and methacrylate functionalized PEG and hydrogels have been tested for the biocompatibility of the fabricated structures with human umbilical cord mesenchymal stem cells (UMSCs). Further, these bioprinted scaffolds were investigated for osteogenic differentiation of UMSCs in two types of culture conditions: namely, i) with osteoinduction media (with OIM), ii) without osteoinduction media (w/o OIM). We have examined the osteoinductivity of scaffolds with the activity of alkaline phosphatase (ALP) content, and significant changes in the ALP activity was observed with the stiffness of developed materials. The extent osteogenic differentiation was observed by alizarin red staining and reverse transcription PCR analysis. Elevated levels of ALP, RUNX2 and COL1 gene expression has been observed in without OIM samples on week 1 and week 3. Further, our study showed that the synthesized alginate methacrylate (AMA) without osteoinduction supplement with young's modulus of 0.34 MPa has a significant difference in ALP quantity and gene expression over the other reported literature. Thus, this work plays a pivotal role in the development of 3D bioprintable and photo-cross-linkable hydrogels in osteogenic differentiation of mesenchymal stem cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
28
审稿时长
3.3 months
期刊介绍: Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信