{"title":"机械可调的光交联生物墨水用于生物3D打印结构中MSCs的成骨分化","authors":"Meenakshi Kamaraj , Gaddamedi Sreevani , Ganesan Prabusankar , Subha Narayan Rath","doi":"10.1016/j.msec.2021.112478","DOIUrl":null,"url":null,"abstract":"<div><p>3D bioprinting technique renders a plausible solution to tissue engineering applications, mainly bone tissue regeneration, which could provide the microenvironment with desired physical, chemical, and mechanical properties. However, the mechanical and structural stability of current natural polymers is a critical issue in the fabrication of bone tissue-engineered scaffolds. To overcome these issues, we have developed 3D bioprintable semi-synthetic polymers derived from natural (sodium alginate, A) and synthetic (polyethylene glycol, PEG) biopolymers. In order to enhance the cross-linking properties and biocompatibility, we have functionalized these polymers with acrylate and methacrylate chemical moieties. These selected combination of natural and synthetic polymers improved the mechanical strength due to the synergistic effect of covalent as well as ionic bond formation in the hydrogel system, which is evident from the tested tensile data. Further, the feasibility of 3D bioprinting of acrylate and methacrylate functionalized PEG and hydrogels have been tested for the biocompatibility of the fabricated structures with human umbilical cord mesenchymal stem cells (UMSCs). Further, these bioprinted scaffolds were investigated for osteogenic differentiation of UMSCs in two types of culture conditions: namely, i) with osteoinduction media (with OIM), ii) without osteoinduction media (w/o OIM). We have examined the osteoinductivity of scaffolds with the activity of alkaline phosphatase (ALP) content, and significant changes in the ALP activity was observed with the stiffness of developed materials. The extent osteogenic differentiation was observed by alizarin red staining and reverse transcription PCR analysis. Elevated levels of ALP, RUNX2 and COL1 gene expression has been observed in without OIM samples on week 1 and week 3. Further, our study showed that the synthesized alginate methacrylate (AMA) without osteoinduction supplement with young's modulus of 0.34 MPa has a significant difference in ALP quantity and gene expression over the other reported literature. Thus, this work plays a pivotal role in the development of 3D bioprintable and photo-cross-linkable hydrogels in osteogenic differentiation of mesenchymal stem cells.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":"131 ","pages":"Article 112478"},"PeriodicalIF":8.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928493121006184/pdfft?md5=e83de26b8588c3ae89bb73f1745c7b80&pid=1-s2.0-S0928493121006184-main.pdf","citationCount":"11","resultStr":"{\"title\":\"Mechanically tunable photo-cross-linkable bioinks for osteogenic differentiation of MSCs in 3D bioprinted constructs\",\"authors\":\"Meenakshi Kamaraj , Gaddamedi Sreevani , Ganesan Prabusankar , Subha Narayan Rath\",\"doi\":\"10.1016/j.msec.2021.112478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>3D bioprinting technique renders a plausible solution to tissue engineering applications, mainly bone tissue regeneration, which could provide the microenvironment with desired physical, chemical, and mechanical properties. However, the mechanical and structural stability of current natural polymers is a critical issue in the fabrication of bone tissue-engineered scaffolds. To overcome these issues, we have developed 3D bioprintable semi-synthetic polymers derived from natural (sodium alginate, A) and synthetic (polyethylene glycol, PEG) biopolymers. In order to enhance the cross-linking properties and biocompatibility, we have functionalized these polymers with acrylate and methacrylate chemical moieties. These selected combination of natural and synthetic polymers improved the mechanical strength due to the synergistic effect of covalent as well as ionic bond formation in the hydrogel system, which is evident from the tested tensile data. Further, the feasibility of 3D bioprinting of acrylate and methacrylate functionalized PEG and hydrogels have been tested for the biocompatibility of the fabricated structures with human umbilical cord mesenchymal stem cells (UMSCs). Further, these bioprinted scaffolds were investigated for osteogenic differentiation of UMSCs in two types of culture conditions: namely, i) with osteoinduction media (with OIM), ii) without osteoinduction media (w/o OIM). We have examined the osteoinductivity of scaffolds with the activity of alkaline phosphatase (ALP) content, and significant changes in the ALP activity was observed with the stiffness of developed materials. The extent osteogenic differentiation was observed by alizarin red staining and reverse transcription PCR analysis. Elevated levels of ALP, RUNX2 and COL1 gene expression has been observed in without OIM samples on week 1 and week 3. Further, our study showed that the synthesized alginate methacrylate (AMA) without osteoinduction supplement with young's modulus of 0.34 MPa has a significant difference in ALP quantity and gene expression over the other reported literature. Thus, this work plays a pivotal role in the development of 3D bioprintable and photo-cross-linkable hydrogels in osteogenic differentiation of mesenchymal stem cells.</p></div>\",\"PeriodicalId\":18212,\"journal\":{\"name\":\"Materials science & engineering. C, Materials for biological applications\",\"volume\":\"131 \",\"pages\":\"Article 112478\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0928493121006184/pdfft?md5=e83de26b8588c3ae89bb73f1745c7b80&pid=1-s2.0-S0928493121006184-main.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials science & engineering. C, Materials for biological applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928493121006184\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928493121006184","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Mechanically tunable photo-cross-linkable bioinks for osteogenic differentiation of MSCs in 3D bioprinted constructs
3D bioprinting technique renders a plausible solution to tissue engineering applications, mainly bone tissue regeneration, which could provide the microenvironment with desired physical, chemical, and mechanical properties. However, the mechanical and structural stability of current natural polymers is a critical issue in the fabrication of bone tissue-engineered scaffolds. To overcome these issues, we have developed 3D bioprintable semi-synthetic polymers derived from natural (sodium alginate, A) and synthetic (polyethylene glycol, PEG) biopolymers. In order to enhance the cross-linking properties and biocompatibility, we have functionalized these polymers with acrylate and methacrylate chemical moieties. These selected combination of natural and synthetic polymers improved the mechanical strength due to the synergistic effect of covalent as well as ionic bond formation in the hydrogel system, which is evident from the tested tensile data. Further, the feasibility of 3D bioprinting of acrylate and methacrylate functionalized PEG and hydrogels have been tested for the biocompatibility of the fabricated structures with human umbilical cord mesenchymal stem cells (UMSCs). Further, these bioprinted scaffolds were investigated for osteogenic differentiation of UMSCs in two types of culture conditions: namely, i) with osteoinduction media (with OIM), ii) without osteoinduction media (w/o OIM). We have examined the osteoinductivity of scaffolds with the activity of alkaline phosphatase (ALP) content, and significant changes in the ALP activity was observed with the stiffness of developed materials. The extent osteogenic differentiation was observed by alizarin red staining and reverse transcription PCR analysis. Elevated levels of ALP, RUNX2 and COL1 gene expression has been observed in without OIM samples on week 1 and week 3. Further, our study showed that the synthesized alginate methacrylate (AMA) without osteoinduction supplement with young's modulus of 0.34 MPa has a significant difference in ALP quantity and gene expression over the other reported literature. Thus, this work plays a pivotal role in the development of 3D bioprintable and photo-cross-linkable hydrogels in osteogenic differentiation of mesenchymal stem cells.
期刊介绍:
Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.