DNA内合组分析显示,在尿路上皮癌患者的非肿瘤上尿路粘膜中,c5 -羟甲基-2'-脱氧胞苷的整体水平降低。

IF 2.7 4区 医学 Q2 GENETICS & HEREDITY
Yuto Matsushita, Yuji Iwashita, Shunsuke Ohtsuka, Ippei Ohnishi, Takashi Yamashita, Hideaki Miyake, Haruhiko Sugimura
{"title":"DNA内合组分析显示,在尿路上皮癌患者的非肿瘤上尿路粘膜中,c5 -羟甲基-2'-脱氧胞苷的整体水平降低。","authors":"Yuto Matsushita,&nbsp;Yuji Iwashita,&nbsp;Shunsuke Ohtsuka,&nbsp;Ippei Ohnishi,&nbsp;Takashi Yamashita,&nbsp;Hideaki Miyake,&nbsp;Haruhiko Sugimura","doi":"10.1186/s41021-021-00228-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>DNA adducts, covalent modifications to DNA due to exposure to specific carcinogens, cause the mispairing of DNA bases, which ultimately results in DNA mutations. DNA methylation in the promoter region, another type of DNA base modification, alters the DNA transcription process, and has been implicated in carcinogenesis in humans due to the down-regulation of tumor suppressor genes. Difficulties are associated with demonstrating the existence of DNA adducts or chemically modified bases in the human urological system. Apart from aristolochic acid-DNA adducts, which cause urothelial carcinoma and endemic nephropathy in a particular geographical area (Balkan), limited information is currently available on DNA adduct profiles in renal cell carcinoma and upper urinary tract urothelial carcinoma, including renal pelvic cancer and ureteral cancer.</p><p><strong>Method: </strong>To elucidate the significance of DNA adducts in carcinogenesis in the urothelial system, we investigated 53 DNA adducts in the non-tumoral renal parenchyma and non-tumoral renal pelvis of patients with renal cell carcinoma, upper urinary tract urothelial carcinoma, and other diseases using liquid chromatography coupled with tandem mass spectrometry. A comparative analysis of tissue types, the status of malignancy, and clinical characteristics, including lifestyle factors, was performed.</p><p><strong>Results: </strong>C5-Methyl-2'-deoxycytidine, C5-hydroxymethyl-2'-deoxycytidine (5hmdC), C5-formyl-2'-deoxycytidine, 2'-deoxyinosine, C8-oxo-2'-deoxyadenosine, and C8-oxo-2'-deoxyguanosine (8-OHdG) were detected in the renal parenchyma and renal pelvis. 8-OHdG was more frequently detected in the renal pelvis than in the renal cortex and medulla (p = 0.048 and p = 0.038, respectively). 5hmdC levels were significantly lower in the renal pelvis of urothelial carcinoma patients (n = 10) than in the urothelium of patients without urothelial carcinoma (n = 15) (p = 0.010). Regarding 5hmdC levels in the renal cortex and medulla, Spearman's rank correlation test revealed a negative correlation between age and 5hmdC levels (r = - 0.46, p = 0.018 and r = - 0.45, p = 0.042, respectively).</p><p><strong>Conclusions: </strong>The present results revealed a reduction of 5hmdC levels in the non-tumoral urinary tract mucosa of patients with upper urinary tract urothelial carcinoma. Therefore, the urothelial cell epithelia of patients with upper urinary tract cancer, even in non-cancerous areas, may be predisposed to urothelial cancer.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":" ","pages":"52"},"PeriodicalIF":2.7000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638144/pdf/","citationCount":"3","resultStr":"{\"title\":\"A DNA adductome analysis revealed a reduction in the global level of C5-hydroxymethyl-2'-deoxycytidine in the non-tumoral upper urinary tract mucosa of urothelial carcinoma patients.\",\"authors\":\"Yuto Matsushita,&nbsp;Yuji Iwashita,&nbsp;Shunsuke Ohtsuka,&nbsp;Ippei Ohnishi,&nbsp;Takashi Yamashita,&nbsp;Hideaki Miyake,&nbsp;Haruhiko Sugimura\",\"doi\":\"10.1186/s41021-021-00228-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>DNA adducts, covalent modifications to DNA due to exposure to specific carcinogens, cause the mispairing of DNA bases, which ultimately results in DNA mutations. DNA methylation in the promoter region, another type of DNA base modification, alters the DNA transcription process, and has been implicated in carcinogenesis in humans due to the down-regulation of tumor suppressor genes. Difficulties are associated with demonstrating the existence of DNA adducts or chemically modified bases in the human urological system. Apart from aristolochic acid-DNA adducts, which cause urothelial carcinoma and endemic nephropathy in a particular geographical area (Balkan), limited information is currently available on DNA adduct profiles in renal cell carcinoma and upper urinary tract urothelial carcinoma, including renal pelvic cancer and ureteral cancer.</p><p><strong>Method: </strong>To elucidate the significance of DNA adducts in carcinogenesis in the urothelial system, we investigated 53 DNA adducts in the non-tumoral renal parenchyma and non-tumoral renal pelvis of patients with renal cell carcinoma, upper urinary tract urothelial carcinoma, and other diseases using liquid chromatography coupled with tandem mass spectrometry. A comparative analysis of tissue types, the status of malignancy, and clinical characteristics, including lifestyle factors, was performed.</p><p><strong>Results: </strong>C5-Methyl-2'-deoxycytidine, C5-hydroxymethyl-2'-deoxycytidine (5hmdC), C5-formyl-2'-deoxycytidine, 2'-deoxyinosine, C8-oxo-2'-deoxyadenosine, and C8-oxo-2'-deoxyguanosine (8-OHdG) were detected in the renal parenchyma and renal pelvis. 8-OHdG was more frequently detected in the renal pelvis than in the renal cortex and medulla (p = 0.048 and p = 0.038, respectively). 5hmdC levels were significantly lower in the renal pelvis of urothelial carcinoma patients (n = 10) than in the urothelium of patients without urothelial carcinoma (n = 15) (p = 0.010). Regarding 5hmdC levels in the renal cortex and medulla, Spearman's rank correlation test revealed a negative correlation between age and 5hmdC levels (r = - 0.46, p = 0.018 and r = - 0.45, p = 0.042, respectively).</p><p><strong>Conclusions: </strong>The present results revealed a reduction of 5hmdC levels in the non-tumoral urinary tract mucosa of patients with upper urinary tract urothelial carcinoma. Therefore, the urothelial cell epithelia of patients with upper urinary tract cancer, even in non-cancerous areas, may be predisposed to urothelial cancer.</p>\",\"PeriodicalId\":12709,\"journal\":{\"name\":\"Genes and Environment\",\"volume\":\" \",\"pages\":\"52\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638144/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes and Environment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s41021-021-00228-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Environment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41021-021-00228-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 3

摘要

背景:DNA加合物是由于暴露于特定致癌物而对DNA进行的共价修饰,会导致DNA碱基错配,最终导致DNA突变。启动子区域的DNA甲基化是另一种DNA碱基修饰,它改变了DNA转录过程,并且由于肿瘤抑制基因的下调而与人类的致癌有关。困难在于证明DNA加合物或化学修饰碱基在人类泌尿系统中的存在。除了马兜铃酸-DNA加合物在特定地理区域(巴尔干)引起尿路上皮癌和地方性肾病外,目前关于肾细胞癌和上尿路尿路上皮癌(包括肾盆腔癌和输尿管癌)DNA加合物谱的信息有限。方法:为了阐明DNA加合物在尿路上皮系统癌变中的意义,我们采用液相色谱联用串联质谱法对肾细胞癌、上尿路尿路上皮癌等疾病患者非肿瘤性肾实质和非肿瘤性肾盂中的53种DNA加合物进行了研究。对组织类型、恶性肿瘤状态和临床特征(包括生活方式因素)进行比较分析。结果:肾实质和肾盂中检测到c5 -甲基-2′-脱氧胞苷、c5 -羟甲基-2′-脱氧胞苷(5hmdC)、c5 -甲酰基-2′-脱氧胞苷、2′-脱氧肌苷、c8 -氧-2′-脱氧腺苷、c8 -氧-2′-脱氧鸟苷(8-OHdG)。8-OHdG在肾盂中的检出率高于肾皮质和肾髓质的检出率(p = 0.048和p = 0.038)。尿路上皮癌患者(n = 10)肾盂中5hmdC水平明显低于非尿路上皮癌患者(n = 15) (p = 0.010)。对于肾皮质和肾髓质的5hmdC水平,Spearman秩相关检验显示年龄与5hmdC水平呈负相关(r = - 0.46, p = 0.018, r = - 0.45, p = 0.042)。结论:本研究结果显示,上尿路尿路上皮癌患者非肿瘤性尿路黏膜中5hmdC水平降低。因此,上尿路癌患者的尿路上皮细胞,即使是非癌区,也可能易患尿路上皮癌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A DNA adductome analysis revealed a reduction in the global level of C5-hydroxymethyl-2'-deoxycytidine in the non-tumoral upper urinary tract mucosa of urothelial carcinoma patients.

A DNA adductome analysis revealed a reduction in the global level of C5-hydroxymethyl-2'-deoxycytidine in the non-tumoral upper urinary tract mucosa of urothelial carcinoma patients.

A DNA adductome analysis revealed a reduction in the global level of C5-hydroxymethyl-2'-deoxycytidine in the non-tumoral upper urinary tract mucosa of urothelial carcinoma patients.

A DNA adductome analysis revealed a reduction in the global level of C5-hydroxymethyl-2'-deoxycytidine in the non-tumoral upper urinary tract mucosa of urothelial carcinoma patients.

Background: DNA adducts, covalent modifications to DNA due to exposure to specific carcinogens, cause the mispairing of DNA bases, which ultimately results in DNA mutations. DNA methylation in the promoter region, another type of DNA base modification, alters the DNA transcription process, and has been implicated in carcinogenesis in humans due to the down-regulation of tumor suppressor genes. Difficulties are associated with demonstrating the existence of DNA adducts or chemically modified bases in the human urological system. Apart from aristolochic acid-DNA adducts, which cause urothelial carcinoma and endemic nephropathy in a particular geographical area (Balkan), limited information is currently available on DNA adduct profiles in renal cell carcinoma and upper urinary tract urothelial carcinoma, including renal pelvic cancer and ureteral cancer.

Method: To elucidate the significance of DNA adducts in carcinogenesis in the urothelial system, we investigated 53 DNA adducts in the non-tumoral renal parenchyma and non-tumoral renal pelvis of patients with renal cell carcinoma, upper urinary tract urothelial carcinoma, and other diseases using liquid chromatography coupled with tandem mass spectrometry. A comparative analysis of tissue types, the status of malignancy, and clinical characteristics, including lifestyle factors, was performed.

Results: C5-Methyl-2'-deoxycytidine, C5-hydroxymethyl-2'-deoxycytidine (5hmdC), C5-formyl-2'-deoxycytidine, 2'-deoxyinosine, C8-oxo-2'-deoxyadenosine, and C8-oxo-2'-deoxyguanosine (8-OHdG) were detected in the renal parenchyma and renal pelvis. 8-OHdG was more frequently detected in the renal pelvis than in the renal cortex and medulla (p = 0.048 and p = 0.038, respectively). 5hmdC levels were significantly lower in the renal pelvis of urothelial carcinoma patients (n = 10) than in the urothelium of patients without urothelial carcinoma (n = 15) (p = 0.010). Regarding 5hmdC levels in the renal cortex and medulla, Spearman's rank correlation test revealed a negative correlation between age and 5hmdC levels (r = - 0.46, p = 0.018 and r = - 0.45, p = 0.042, respectively).

Conclusions: The present results revealed a reduction of 5hmdC levels in the non-tumoral urinary tract mucosa of patients with upper urinary tract urothelial carcinoma. Therefore, the urothelial cell epithelia of patients with upper urinary tract cancer, even in non-cancerous areas, may be predisposed to urothelial cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes and Environment
Genes and Environment Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
4.00
自引率
0.00%
发文量
24
审稿时长
27 weeks
期刊介绍: Genes and Environment is an open access, peer-reviewed journal that aims to accelerate communications among global scientists working in the field of genes and environment. The journal publishes articles across a broad range of topics including environmental mutagenesis and carcinogenesis, environmental genomics and epigenetics, molecular epidemiology, genetic toxicology and regulatory sciences. Topics published in the journal include, but are not limited to, mutagenesis and anti-mutagenesis in bacteria; genotoxicity in mammalian somatic cells; genotoxicity in germ cells; replication and repair; DNA damage; metabolic activation and inactivation; water and air pollution; ROS, NO and photoactivation; pharmaceuticals and anticancer agents; radiation; endocrine disrupters; indirect mutagenesis; threshold; new techniques for environmental mutagenesis studies; DNA methylation (enzymatic); structure activity relationship; chemoprevention of cancer; regulatory science. Genetic toxicology including risk evaluation for human health, validation studies on testing methods and subjects of guidelines for regulation of chemicals are also within its scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信