捕获转录因子相互作用组对亚致死杀虫剂暴露的反应

IF 2.2 Q1 ENTOMOLOGY
Victoria A Ingham , Sara Elg , Sanjay C Nagi , Frank Dondelinger
{"title":"捕获转录因子相互作用组对亚致死杀虫剂暴露的反应","authors":"Victoria A Ingham ,&nbsp;Sara Elg ,&nbsp;Sanjay C Nagi ,&nbsp;Frank Dondelinger","doi":"10.1016/j.cris.2021.100018","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing levels of pesticide resistance in agricultural pests and disease vectors represents a threat to both food security and global health. As insecticide resistance intensity strengthens and spreads, the likelihood of a pest encountering a sub-lethal dose of pesticide dramatically increases. Here, we apply dynamic Bayesian networks to a transcriptome time-course generated using sub-lethal pyrethroid exposure on a highly resistant <em>Anopheles coluzzii</em> population. The model accounts for circadian rhythm and ageing effects allowing high confidence identification of transcription factors with key roles in pesticide response. The associations generated by this model show high concordance with lab-based validation and identifies 44 transcription factors putatively regulating insecticide-responsive transcripts. We identify six key regulators, with each displaying differing enrichment terms, demonstrating the complexity of pesticide response. The considerable overlap of resistance mechanisms in agricultural pests and disease vectors strongly suggests that these findings are relevant in a wide variety of pest species.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"1 ","pages":"Article 100018"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cris.2021.100018","citationCount":"0","resultStr":"{\"title\":\"Capturing the transcription factor interactome in response to sub-lethal insecticide exposure\",\"authors\":\"Victoria A Ingham ,&nbsp;Sara Elg ,&nbsp;Sanjay C Nagi ,&nbsp;Frank Dondelinger\",\"doi\":\"10.1016/j.cris.2021.100018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing levels of pesticide resistance in agricultural pests and disease vectors represents a threat to both food security and global health. As insecticide resistance intensity strengthens and spreads, the likelihood of a pest encountering a sub-lethal dose of pesticide dramatically increases. Here, we apply dynamic Bayesian networks to a transcriptome time-course generated using sub-lethal pyrethroid exposure on a highly resistant <em>Anopheles coluzzii</em> population. The model accounts for circadian rhythm and ageing effects allowing high confidence identification of transcription factors with key roles in pesticide response. The associations generated by this model show high concordance with lab-based validation and identifies 44 transcription factors putatively regulating insecticide-responsive transcripts. We identify six key regulators, with each displaying differing enrichment terms, demonstrating the complexity of pesticide response. The considerable overlap of resistance mechanisms in agricultural pests and disease vectors strongly suggests that these findings are relevant in a wide variety of pest species.</p></div>\",\"PeriodicalId\":34629,\"journal\":{\"name\":\"Current Research in Insect Science\",\"volume\":\"1 \",\"pages\":\"Article 100018\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.cris.2021.100018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Insect Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266651582100010X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Insect Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266651582100010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

农业病虫害媒介对农药的抗药性日益增强,对粮食安全和全球健康构成威胁。随着杀虫剂抗性强度的增强和扩散,害虫遭遇亚致死剂量杀虫剂的可能性急剧增加。在这里,我们将动态贝叶斯网络应用于使用亚致死拟除虫菊酯暴露在高度抗性的科鲁兹按蚊种群中产生的转录组时间过程。该模型考虑了昼夜节律和衰老效应,从而高可信度地确定了在农药反应中起关键作用的转录因子。该模型产生的关联显示出与实验室验证的高度一致性,并确定了44个转录因子调节杀虫剂应答转录物。我们确定了六个关键的调节,每个显示不同的富集条件,显示农药反应的复杂性。农业害虫和病媒中相当多的抗性机制重叠强烈表明,这些发现适用于多种害虫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Capturing the transcription factor interactome in response to sub-lethal insecticide exposure

Capturing the transcription factor interactome in response to sub-lethal insecticide exposure

Capturing the transcription factor interactome in response to sub-lethal insecticide exposure

The increasing levels of pesticide resistance in agricultural pests and disease vectors represents a threat to both food security and global health. As insecticide resistance intensity strengthens and spreads, the likelihood of a pest encountering a sub-lethal dose of pesticide dramatically increases. Here, we apply dynamic Bayesian networks to a transcriptome time-course generated using sub-lethal pyrethroid exposure on a highly resistant Anopheles coluzzii population. The model accounts for circadian rhythm and ageing effects allowing high confidence identification of transcription factors with key roles in pesticide response. The associations generated by this model show high concordance with lab-based validation and identifies 44 transcription factors putatively regulating insecticide-responsive transcripts. We identify six key regulators, with each displaying differing enrichment terms, demonstrating the complexity of pesticide response. The considerable overlap of resistance mechanisms in agricultural pests and disease vectors strongly suggests that these findings are relevant in a wide variety of pest species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Research in Insect Science
Current Research in Insect Science Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
3.20
自引率
0.00%
发文量
22
审稿时长
36 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信