Mikaela Qvarfordt, Martin Anderson, Alejandro Sanchez-Crespo, Maria Diakopoulou, Magnus Svartengren
{"title":"COPD和IPF患者超细碳颗粒的肺易位。","authors":"Mikaela Qvarfordt, Martin Anderson, Alejandro Sanchez-Crespo, Maria Diakopoulou, Magnus Svartengren","doi":"10.1080/08958378.2021.2019859","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Epidemiological studies indicate association between elevated air pollution and adverse health effects. Several mechanisms have been suggested, including translocation of inhaled ultrafine carbon (UFC) particles into the bloodstream. Previous studies in healthy subjects have shown no significant pulmonary translocation of UFC-particles. This study aimed to assess if UFC-particles translocate from damaged alveolar compartment in subjects suffering from chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).</p><p><strong>Methods: </strong>Eleven COPD and nine IPF subjects were exposed to a 100 nm UFC-particle-aerosol labeled with Indium-111. Activity in the body was followed up for 10 days using gamma camera planar-imaging as well as in blood and urine samples.</p><p><strong>Results: </strong>The pulmonary central to periphery activity ratio was significantly higher for COPD as compared to IPF subjects at exposure, 1.8 and 1.4, respectively and remained constant throughout the test period. Ten days after exposure, the estimated median pulmonary translocation of UFC particles was 22.8 and 25.8% for COPD and IPF, respectively. Bound activity was present in blood throughout the test period, peaking at 24-h postinhalation with a median concentration of 5.6 and 8.9 Bq/ml for the COPD and IPF, respectively. Median bound activity excreted in urine (% of inhaled) after 10 days was 1.4% in COPD and 0.7% in IPF. Activity accumulation in liver and spleen could not be demonstrated.</p><p><strong>Conclusions: </strong>Our results suggest that UFC particles leak through the damaged alveolar barrier to the bloodstream in COPD and IPF patients probably distributing in a wide spectrum of whole-body tissues.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":"34 1-2","pages":"14-23"},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pulmonary translocation of ultrafine carbon particles in COPD and IPF patients.\",\"authors\":\"Mikaela Qvarfordt, Martin Anderson, Alejandro Sanchez-Crespo, Maria Diakopoulou, Magnus Svartengren\",\"doi\":\"10.1080/08958378.2021.2019859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Epidemiological studies indicate association between elevated air pollution and adverse health effects. Several mechanisms have been suggested, including translocation of inhaled ultrafine carbon (UFC) particles into the bloodstream. Previous studies in healthy subjects have shown no significant pulmonary translocation of UFC-particles. This study aimed to assess if UFC-particles translocate from damaged alveolar compartment in subjects suffering from chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).</p><p><strong>Methods: </strong>Eleven COPD and nine IPF subjects were exposed to a 100 nm UFC-particle-aerosol labeled with Indium-111. Activity in the body was followed up for 10 days using gamma camera planar-imaging as well as in blood and urine samples.</p><p><strong>Results: </strong>The pulmonary central to periphery activity ratio was significantly higher for COPD as compared to IPF subjects at exposure, 1.8 and 1.4, respectively and remained constant throughout the test period. Ten days after exposure, the estimated median pulmonary translocation of UFC particles was 22.8 and 25.8% for COPD and IPF, respectively. Bound activity was present in blood throughout the test period, peaking at 24-h postinhalation with a median concentration of 5.6 and 8.9 Bq/ml for the COPD and IPF, respectively. Median bound activity excreted in urine (% of inhaled) after 10 days was 1.4% in COPD and 0.7% in IPF. Activity accumulation in liver and spleen could not be demonstrated.</p><p><strong>Conclusions: </strong>Our results suggest that UFC particles leak through the damaged alveolar barrier to the bloodstream in COPD and IPF patients probably distributing in a wide spectrum of whole-body tissues.</p>\",\"PeriodicalId\":13561,\"journal\":{\"name\":\"Inhalation Toxicology\",\"volume\":\"34 1-2\",\"pages\":\"14-23\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inhalation Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08958378.2021.2019859\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhalation Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08958378.2021.2019859","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Pulmonary translocation of ultrafine carbon particles in COPD and IPF patients.
Objective: Epidemiological studies indicate association between elevated air pollution and adverse health effects. Several mechanisms have been suggested, including translocation of inhaled ultrafine carbon (UFC) particles into the bloodstream. Previous studies in healthy subjects have shown no significant pulmonary translocation of UFC-particles. This study aimed to assess if UFC-particles translocate from damaged alveolar compartment in subjects suffering from chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).
Methods: Eleven COPD and nine IPF subjects were exposed to a 100 nm UFC-particle-aerosol labeled with Indium-111. Activity in the body was followed up for 10 days using gamma camera planar-imaging as well as in blood and urine samples.
Results: The pulmonary central to periphery activity ratio was significantly higher for COPD as compared to IPF subjects at exposure, 1.8 and 1.4, respectively and remained constant throughout the test period. Ten days after exposure, the estimated median pulmonary translocation of UFC particles was 22.8 and 25.8% for COPD and IPF, respectively. Bound activity was present in blood throughout the test period, peaking at 24-h postinhalation with a median concentration of 5.6 and 8.9 Bq/ml for the COPD and IPF, respectively. Median bound activity excreted in urine (% of inhaled) after 10 days was 1.4% in COPD and 0.7% in IPF. Activity accumulation in liver and spleen could not be demonstrated.
Conclusions: Our results suggest that UFC particles leak through the damaged alveolar barrier to the bloodstream in COPD and IPF patients probably distributing in a wide spectrum of whole-body tissues.
期刊介绍:
Inhalation Toxicology is a peer-reviewed publication providing a key forum for the latest accomplishments and advancements in concepts, approaches, and procedures presently being used to evaluate the health risk associated with airborne chemicals.
The journal publishes original research, reviews, symposia, and workshop topics involving the respiratory system’s functions in health and disease, the pathogenesis and mechanism of injury, the extrapolation of animal data to humans, the effects of inhaled substances on extra-pulmonary systems, as well as reliable and innovative models for predicting human disease.