{"title":"线粒体急性氧传感和信号。","authors":"José López-Barneo, Patricia Ortega-Sáenz","doi":"10.1080/10409238.2021.2004575","DOIUrl":null,"url":null,"abstract":"<p><p>Oxygen (O<sub>2</sub>) is essential for life and therefore the supply of sufficient O<sub>2</sub> to the tissues is a major physiological challenge. In mammals, a deficit of O<sub>2</sub> (hypoxia) triggers rapid cardiorespiratory reflexes (e.g. hyperventilation and increased heart output) that within a few seconds increase the uptake of O<sub>2</sub> by the lungs and its distribution throughout the body. The prototypical acute O<sub>2</sub>-sensing organ is the carotid body (CB), which contains sensory glomus cells expressing O<sub>2</sub>-regulated ion channels. In response to hypoxia, glomus cells depolarize and release transmitters which activate afferent fibers terminating at the brainstem respiratory and autonomic centers. In this review, we summarize the basic properties of CB chemoreceptor cells and the essential role played by their specialized mitochondria in acute O<sub>2</sub> sensing and signaling. We focus on recent data supporting a \"mitochondria-to-membrane signaling\" model of CB chemosensory transduction. The possibility that the differential expression of specific subunit isoforms and enzymes could allow mitochondria to play a generalized adaptive O<sub>2</sub>-sensing and signaling role in a wide variety of cells is also discussed.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":" ","pages":"205-225"},"PeriodicalIF":6.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Mitochondrial acute oxygen sensing and signaling.\",\"authors\":\"José López-Barneo, Patricia Ortega-Sáenz\",\"doi\":\"10.1080/10409238.2021.2004575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxygen (O<sub>2</sub>) is essential for life and therefore the supply of sufficient O<sub>2</sub> to the tissues is a major physiological challenge. In mammals, a deficit of O<sub>2</sub> (hypoxia) triggers rapid cardiorespiratory reflexes (e.g. hyperventilation and increased heart output) that within a few seconds increase the uptake of O<sub>2</sub> by the lungs and its distribution throughout the body. The prototypical acute O<sub>2</sub>-sensing organ is the carotid body (CB), which contains sensory glomus cells expressing O<sub>2</sub>-regulated ion channels. In response to hypoxia, glomus cells depolarize and release transmitters which activate afferent fibers terminating at the brainstem respiratory and autonomic centers. In this review, we summarize the basic properties of CB chemoreceptor cells and the essential role played by their specialized mitochondria in acute O<sub>2</sub> sensing and signaling. We focus on recent data supporting a \\\"mitochondria-to-membrane signaling\\\" model of CB chemosensory transduction. The possibility that the differential expression of specific subunit isoforms and enzymes could allow mitochondria to play a generalized adaptive O<sub>2</sub>-sensing and signaling role in a wide variety of cells is also discussed.</p>\",\"PeriodicalId\":10794,\"journal\":{\"name\":\"Critical Reviews in Biochemistry and Molecular Biology\",\"volume\":\" \",\"pages\":\"205-225\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10409238.2021.2004575\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10409238.2021.2004575","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Oxygen (O2) is essential for life and therefore the supply of sufficient O2 to the tissues is a major physiological challenge. In mammals, a deficit of O2 (hypoxia) triggers rapid cardiorespiratory reflexes (e.g. hyperventilation and increased heart output) that within a few seconds increase the uptake of O2 by the lungs and its distribution throughout the body. The prototypical acute O2-sensing organ is the carotid body (CB), which contains sensory glomus cells expressing O2-regulated ion channels. In response to hypoxia, glomus cells depolarize and release transmitters which activate afferent fibers terminating at the brainstem respiratory and autonomic centers. In this review, we summarize the basic properties of CB chemoreceptor cells and the essential role played by their specialized mitochondria in acute O2 sensing and signaling. We focus on recent data supporting a "mitochondria-to-membrane signaling" model of CB chemosensory transduction. The possibility that the differential expression of specific subunit isoforms and enzymes could allow mitochondria to play a generalized adaptive O2-sensing and signaling role in a wide variety of cells is also discussed.
期刊介绍:
As the discipline of biochemistry and molecular biology have greatly advanced in the last quarter century, significant contributions have been made towards the advancement of general medicine, genetics, immunology, developmental biology, and biophysics. Investigators in a wide range of disciplines increasingly require an appreciation of the significance of current biochemical and molecular biology advances while, members of the biochemical and molecular biology community itself seek concise information on advances in areas remote from their own specialties.
Critical Reviews in Biochemistry and Molecular Biology believes that well-written review articles prove an effective device for the integration and meaningful comprehension of vast, often contradictory, literature. Review articles also provide an opportunity for creative scholarship by synthesizing known facts, fruitful hypotheses, and new concepts. Accordingly, Critical Reviews in Biochemistry and Molecular Biology publishes high-quality reviews that organize, evaluate, and present the current status of high-impact, current issues in the area of biochemistry and molecular biology.
Topics are selected on the advice of an advisory board of outstanding scientists, who also suggest authors of special competence. The topics chosen are sufficiently broad to interest a wide audience of readers, yet focused enough to be within the competence of a single author. Authors are chosen based on their activity in the field and their proven ability to produce a well-written publication.