{"title":"单细胞数据时代血细胞命运决定的机制模型","authors":"Ingmar Glauche , Carsten Marr","doi":"10.1016/j.coisb.2021.100355","DOIUrl":null,"url":null,"abstract":"<div><p>Billions of functionally distinct blood cells emerge from a pool of hematopoietic stem cells in our bodies every day. This progressive differentiation process is hierarchically structured and remarkably robust. We provide an introductory review to mathematical approaches addressing the functional aspects of how lineage choice is potentially implemented on a molecular level. Emerging from studies on the mutual repression of key transcription factors, we illustrate how those simple concepts have been challenged in recent years and subsequently extended. Especially, the analysis of omics data on the single-cell level with computational tools provides descriptive insights on a yet unknown level, while their embedding into a consistent mechanistic and mathematical framework is still incomplete.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.coisb.2021.100355","citationCount":"2","resultStr":"{\"title\":\"Mechanistic models of blood cell fate decisions in the era of single-cell data\",\"authors\":\"Ingmar Glauche , Carsten Marr\",\"doi\":\"10.1016/j.coisb.2021.100355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Billions of functionally distinct blood cells emerge from a pool of hematopoietic stem cells in our bodies every day. This progressive differentiation process is hierarchically structured and remarkably robust. We provide an introductory review to mathematical approaches addressing the functional aspects of how lineage choice is potentially implemented on a molecular level. Emerging from studies on the mutual repression of key transcription factors, we illustrate how those simple concepts have been challenged in recent years and subsequently extended. Especially, the analysis of omics data on the single-cell level with computational tools provides descriptive insights on a yet unknown level, while their embedding into a consistent mechanistic and mathematical framework is still incomplete.</p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.coisb.2021.100355\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310021000494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310021000494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mechanistic models of blood cell fate decisions in the era of single-cell data
Billions of functionally distinct blood cells emerge from a pool of hematopoietic stem cells in our bodies every day. This progressive differentiation process is hierarchically structured and remarkably robust. We provide an introductory review to mathematical approaches addressing the functional aspects of how lineage choice is potentially implemented on a molecular level. Emerging from studies on the mutual repression of key transcription factors, we illustrate how those simple concepts have been challenged in recent years and subsequently extended. Especially, the analysis of omics data on the single-cell level with computational tools provides descriptive insights on a yet unknown level, while their embedding into a consistent mechanistic and mathematical framework is still incomplete.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution