第一届国际应用生物信息学会议(iABC'21)特刊。

IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Jens Allmer, Mourad Elloumi, Matteo Comin, Ralf Hofestädt
{"title":"第一届国际应用生物信息学会议(iABC'21)特刊。","authors":"Jens Allmer, Mourad Elloumi, Matteo Comin, Ralf Hofestädt","doi":"10.1515/jib-2021-0042","DOIUrl":null,"url":null,"abstract":"Diseases can be tied to changes at the molecular level within affected cells. This can be concerning transcription, translation, or any other mechanism involved in gene expression, such as post-transcriptional regulation. Instrumentation for the measurement of such molecular changes is readily available and produces large amounts of data. For example, DNA and RNA sequencing, as well as protein quantitation, and sequencing can be achieved via next-generation sequencing andmass spectrometry, respectively. One current challenge is the analysis and integration of the resulting heterogeneous and large datasets. Bioinformatics is the field of study which produces algorithms and integrative approaches to attempt suchdata analyses. The primary aim in algorithmic bioinformatics is, however, the development of algorithms and not their application. Typically, novel algorithms are introduced with a proof of principle, and they are applied to some data for that purpose, but usually not comprehensively. Their data might slightly differ from the proof of principle, inducing further data analysis challenges. Additionally, applying such algorithms to their data may be involved for researchers from the biomedical domain. The 1st International Applied Bioinformatics Conference was conceived to bring together representatives from all research fields involved to increase knowledge transfer. First planned for 2020 and then deferred to 2021 due to the pandemic caused by the Coronavirus [1], the conference was held online. Despite the virtual nature of the conference, attentionwas great.We receivedmany goodmanuscripts and invited a few to submit their full versions to this special issue. The range of topics was extensive, but many submissions concerned the interface of bioinformatics and its application. The selected papers for this special issue also discuss various topics such as sequence alignment and gene network reconstruction. The first paper in this special issue concerns a challenging issue in bioinformatics, the usage of pangenomes instead of single reference genomes and offers a fast variation-aware read mapping algorithm [2]. Mapping is also vital to investigate gene expression, which is essential for the secondmanuscript. It discusses how microRNA and mRNA expression profiles can be investigated [3]. From this, modular networks are inferred, describing post-transcriptional regulatory networks. Such networks are challenging to visualize, which is the focus of the third paper [4]. The work summarizes the state-of-the-art in bicluster visualization and is also based on gene expression data. Next, we move from transcriptomics to metabolomics. A disparity filter was applied to perform network analysis for colorectal cancer as a proof of principle [5]. The final two manuscripts focus more on practical application in cancer. First, the prostate, ovary, testes, and embryo","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709735/pdf/","citationCount":"2","resultStr":"{\"title\":\"Special Issue of the 1st International Applied Bioinformatics Conference (iABC'21).\",\"authors\":\"Jens Allmer, Mourad Elloumi, Matteo Comin, Ralf Hofestädt\",\"doi\":\"10.1515/jib-2021-0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diseases can be tied to changes at the molecular level within affected cells. This can be concerning transcription, translation, or any other mechanism involved in gene expression, such as post-transcriptional regulation. Instrumentation for the measurement of such molecular changes is readily available and produces large amounts of data. For example, DNA and RNA sequencing, as well as protein quantitation, and sequencing can be achieved via next-generation sequencing andmass spectrometry, respectively. One current challenge is the analysis and integration of the resulting heterogeneous and large datasets. Bioinformatics is the field of study which produces algorithms and integrative approaches to attempt suchdata analyses. The primary aim in algorithmic bioinformatics is, however, the development of algorithms and not their application. Typically, novel algorithms are introduced with a proof of principle, and they are applied to some data for that purpose, but usually not comprehensively. Their data might slightly differ from the proof of principle, inducing further data analysis challenges. Additionally, applying such algorithms to their data may be involved for researchers from the biomedical domain. The 1st International Applied Bioinformatics Conference was conceived to bring together representatives from all research fields involved to increase knowledge transfer. First planned for 2020 and then deferred to 2021 due to the pandemic caused by the Coronavirus [1], the conference was held online. Despite the virtual nature of the conference, attentionwas great.We receivedmany goodmanuscripts and invited a few to submit their full versions to this special issue. The range of topics was extensive, but many submissions concerned the interface of bioinformatics and its application. The selected papers for this special issue also discuss various topics such as sequence alignment and gene network reconstruction. The first paper in this special issue concerns a challenging issue in bioinformatics, the usage of pangenomes instead of single reference genomes and offers a fast variation-aware read mapping algorithm [2]. Mapping is also vital to investigate gene expression, which is essential for the secondmanuscript. It discusses how microRNA and mRNA expression profiles can be investigated [3]. From this, modular networks are inferred, describing post-transcriptional regulatory networks. Such networks are challenging to visualize, which is the focus of the third paper [4]. The work summarizes the state-of-the-art in bicluster visualization and is also based on gene expression data. Next, we move from transcriptomics to metabolomics. A disparity filter was applied to perform network analysis for colorectal cancer as a proof of principle [5]. The final two manuscripts focus more on practical application in cancer. First, the prostate, ovary, testes, and embryo\",\"PeriodicalId\":53625,\"journal\":{\"name\":\"Journal of Integrative Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709735/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jib-2021-0042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2021-0042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Special Issue of the 1st International Applied Bioinformatics Conference (iABC'21).
Diseases can be tied to changes at the molecular level within affected cells. This can be concerning transcription, translation, or any other mechanism involved in gene expression, such as post-transcriptional regulation. Instrumentation for the measurement of such molecular changes is readily available and produces large amounts of data. For example, DNA and RNA sequencing, as well as protein quantitation, and sequencing can be achieved via next-generation sequencing andmass spectrometry, respectively. One current challenge is the analysis and integration of the resulting heterogeneous and large datasets. Bioinformatics is the field of study which produces algorithms and integrative approaches to attempt suchdata analyses. The primary aim in algorithmic bioinformatics is, however, the development of algorithms and not their application. Typically, novel algorithms are introduced with a proof of principle, and they are applied to some data for that purpose, but usually not comprehensively. Their data might slightly differ from the proof of principle, inducing further data analysis challenges. Additionally, applying such algorithms to their data may be involved for researchers from the biomedical domain. The 1st International Applied Bioinformatics Conference was conceived to bring together representatives from all research fields involved to increase knowledge transfer. First planned for 2020 and then deferred to 2021 due to the pandemic caused by the Coronavirus [1], the conference was held online. Despite the virtual nature of the conference, attentionwas great.We receivedmany goodmanuscripts and invited a few to submit their full versions to this special issue. The range of topics was extensive, but many submissions concerned the interface of bioinformatics and its application. The selected papers for this special issue also discuss various topics such as sequence alignment and gene network reconstruction. The first paper in this special issue concerns a challenging issue in bioinformatics, the usage of pangenomes instead of single reference genomes and offers a fast variation-aware read mapping algorithm [2]. Mapping is also vital to investigate gene expression, which is essential for the secondmanuscript. It discusses how microRNA and mRNA expression profiles can be investigated [3]. From this, modular networks are inferred, describing post-transcriptional regulatory networks. Such networks are challenging to visualize, which is the focus of the third paper [4]. The work summarizes the state-of-the-art in bicluster visualization and is also based on gene expression data. Next, we move from transcriptomics to metabolomics. A disparity filter was applied to perform network analysis for colorectal cancer as a proof of principle [5]. The final two manuscripts focus more on practical application in cancer. First, the prostate, ovary, testes, and embryo
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrative Bioinformatics
Journal of Integrative Bioinformatics Medicine-Medicine (all)
CiteScore
3.10
自引率
5.30%
发文量
27
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信