基于对称外推法的低误差Kramers-Kronig估计。

Q3 Biochemistry, Genetics and Molecular Biology
Journal of Electrical Bioimpedance Pub Date : 2021-12-27 eCollection Date: 2021-01-01 DOI:10.2478/joeb-2021-0017
G A Ruiz, C J Felice
{"title":"基于对称外推法的低误差Kramers-Kronig估计。","authors":"G A Ruiz,&nbsp;C J Felice","doi":"10.2478/joeb-2021-0017","DOIUrl":null,"url":null,"abstract":"<p><p>Kramers-Kronig (KK) equations allow us to obtain the real or imaginary part of linear, causal and time constant functions, starting from the imaginary or real part respectively. They are normally applied on different practical applications as a control method. A common problem in measurements is the lack of data in a wide-range frequency, due to some of the inherent limitations of experiments or practical limitations of the used technology. Different solutions to this problem were proved, such as several methods for extrapolation, some of which based on piecewise polynomial fit or the approach based on the expected asymptotical behavior. In this work, we propose an approach based on the symmetric extrapolation method to generate data in missing frequency ranges, to minimize the estimated error of the KK equations. The results show that with data from impedance measurements of an electrode-electrolyte interface, the adjustment error of the transformed functions can be drastically reduced to below 1%.</p>","PeriodicalId":38125,"journal":{"name":"Journal of Electrical Bioimpedance","volume":"12 1","pages":"147-152"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8713384/pdf/","citationCount":"1","resultStr":"{\"title\":\"Low Error Kramers-Kronig Estimations Using Symmetric Extrapolation Method.\",\"authors\":\"G A Ruiz,&nbsp;C J Felice\",\"doi\":\"10.2478/joeb-2021-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kramers-Kronig (KK) equations allow us to obtain the real or imaginary part of linear, causal and time constant functions, starting from the imaginary or real part respectively. They are normally applied on different practical applications as a control method. A common problem in measurements is the lack of data in a wide-range frequency, due to some of the inherent limitations of experiments or practical limitations of the used technology. Different solutions to this problem were proved, such as several methods for extrapolation, some of which based on piecewise polynomial fit or the approach based on the expected asymptotical behavior. In this work, we propose an approach based on the symmetric extrapolation method to generate data in missing frequency ranges, to minimize the estimated error of the KK equations. The results show that with data from impedance measurements of an electrode-electrolyte interface, the adjustment error of the transformed functions can be drastically reduced to below 1%.</p>\",\"PeriodicalId\":38125,\"journal\":{\"name\":\"Journal of Electrical Bioimpedance\",\"volume\":\"12 1\",\"pages\":\"147-152\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8713384/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Bioimpedance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/joeb-2021-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Bioimpedance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/joeb-2021-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

摘要

Kramers-Kronig (KK)方程允许我们分别从虚部或实部出发,得到线性、因果和时间常数函数的实部或虚部。它们通常作为一种控制方法应用于不同的实际应用中。测量中的一个常见问题是由于实验的一些固有限制或所用技术的实际限制而缺乏宽频率范围内的数据。证明了该问题的不同解,例如几种外推方法,其中一些方法基于分段多项式拟合或基于期望渐近行为的方法。在这项工作中,我们提出了一种基于对称外推法的方法来生成缺失频率范围内的数据,以最小化KK方程的估计误差。结果表明,利用电极-电解质界面阻抗测量数据,转换函数的调整误差可大幅降低到1%以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Low Error Kramers-Kronig Estimations Using Symmetric Extrapolation Method.

Low Error Kramers-Kronig Estimations Using Symmetric Extrapolation Method.

Low Error Kramers-Kronig Estimations Using Symmetric Extrapolation Method.

Low Error Kramers-Kronig Estimations Using Symmetric Extrapolation Method.

Kramers-Kronig (KK) equations allow us to obtain the real or imaginary part of linear, causal and time constant functions, starting from the imaginary or real part respectively. They are normally applied on different practical applications as a control method. A common problem in measurements is the lack of data in a wide-range frequency, due to some of the inherent limitations of experiments or practical limitations of the used technology. Different solutions to this problem were proved, such as several methods for extrapolation, some of which based on piecewise polynomial fit or the approach based on the expected asymptotical behavior. In this work, we propose an approach based on the symmetric extrapolation method to generate data in missing frequency ranges, to minimize the estimated error of the KK equations. The results show that with data from impedance measurements of an electrode-electrolyte interface, the adjustment error of the transformed functions can be drastically reduced to below 1%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical Bioimpedance
Journal of Electrical Bioimpedance Engineering-Biomedical Engineering
CiteScore
3.00
自引率
0.00%
发文量
8
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信