超声处理岩藻糖聚糖是一种很有前途的治疗剂。

Q3 Medicine
Victoria Suprunchuk
{"title":"超声处理岩藻糖聚糖是一种很有前途的治疗剂。","authors":"Victoria Suprunchuk","doi":"10.17219/pim/143961","DOIUrl":null,"url":null,"abstract":"<p><p>Fucoidans represent the sulfated heteropolysaccharides that possess a wide range of important pharmacological properties. The properties of a fucoidan depend on several factors, including the molecular weight and the way of extraction. However, the selection of an optimal depolymerization method is necessary to enhance its therapeutic applications. Reducing the molecular weight of fucoidans will make it possible to use them in creating nanoparticles and nanocarriers for, among others, the targeted drug delivery. The molecular mass of the polymer can be changed by means of various methods of depolymerization. In this work, the possibility of application of ultrasonic destruction for decrease in the size of fucoidan molecules for the purpose of expansion of opportunities and spheres of their therapeutic application is considered. This is one of the simple and effective methods of depolymerization of fucoidan, which leads to a decrease in molecular weight without significant structural changes in macromolecules. In addition, methods and potential applications of the ultrasonic extraction of fucoidan from seaweed and the possibilities of their combination are discussed, as well as other physical or chemical methods of extraction.</p>","PeriodicalId":20355,"journal":{"name":"Polimery w medycynie","volume":"51 2","pages":"85-90"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Ultrasonic-treated fucoidan as a promising therapeutic agent.\",\"authors\":\"Victoria Suprunchuk\",\"doi\":\"10.17219/pim/143961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fucoidans represent the sulfated heteropolysaccharides that possess a wide range of important pharmacological properties. The properties of a fucoidan depend on several factors, including the molecular weight and the way of extraction. However, the selection of an optimal depolymerization method is necessary to enhance its therapeutic applications. Reducing the molecular weight of fucoidans will make it possible to use them in creating nanoparticles and nanocarriers for, among others, the targeted drug delivery. The molecular mass of the polymer can be changed by means of various methods of depolymerization. In this work, the possibility of application of ultrasonic destruction for decrease in the size of fucoidan molecules for the purpose of expansion of opportunities and spheres of their therapeutic application is considered. This is one of the simple and effective methods of depolymerization of fucoidan, which leads to a decrease in molecular weight without significant structural changes in macromolecules. In addition, methods and potential applications of the ultrasonic extraction of fucoidan from seaweed and the possibilities of their combination are discussed, as well as other physical or chemical methods of extraction.</p>\",\"PeriodicalId\":20355,\"journal\":{\"name\":\"Polimery w medycynie\",\"volume\":\"51 2\",\"pages\":\"85-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polimery w medycynie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17219/pim/143961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polimery w medycynie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17219/pim/143961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 7

摘要

岩藻多糖是一种硫酸化杂多糖,具有广泛的重要药理特性。岩藻糖聚糖的性质取决于几个因素,包括分子量和提取方法。然而,选择最佳解聚方法是提高其治疗应用的必要条件。减少岩藻糖聚糖的分子量将使其有可能用于制造纳米粒子和纳米载体,其中包括靶向药物递送。通过各种解聚方法可以改变聚合物的分子质量。在这项工作中,考虑了应用超声波破坏减少岩藻糖聚糖分子大小的可能性,以扩大其治疗应用的机会和范围。这是一种简单有效的褐藻糖聚糖解聚方法,在大分子结构不发生明显变化的情况下,使分子量降低。此外,还讨论了超声波提取海藻褐藻聚糖的方法和潜在应用,以及它们组合的可能性,以及其他物理或化学提取方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasonic-treated fucoidan as a promising therapeutic agent.

Fucoidans represent the sulfated heteropolysaccharides that possess a wide range of important pharmacological properties. The properties of a fucoidan depend on several factors, including the molecular weight and the way of extraction. However, the selection of an optimal depolymerization method is necessary to enhance its therapeutic applications. Reducing the molecular weight of fucoidans will make it possible to use them in creating nanoparticles and nanocarriers for, among others, the targeted drug delivery. The molecular mass of the polymer can be changed by means of various methods of depolymerization. In this work, the possibility of application of ultrasonic destruction for decrease in the size of fucoidan molecules for the purpose of expansion of opportunities and spheres of their therapeutic application is considered. This is one of the simple and effective methods of depolymerization of fucoidan, which leads to a decrease in molecular weight without significant structural changes in macromolecules. In addition, methods and potential applications of the ultrasonic extraction of fucoidan from seaweed and the possibilities of their combination are discussed, as well as other physical or chemical methods of extraction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polimery w medycynie
Polimery w medycynie Medicine-Medicine (all)
CiteScore
3.30
自引率
0.00%
发文量
9
审稿时长
53 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信