{"title":"神经毒剂中毒后DNA氧化损伤的评价。","authors":"Jiri Kassa, Rudolf Stetina","doi":"10.32725/jab.2019.017","DOIUrl":null,"url":null,"abstract":"<p><p>The potency of three nerve agents (sarin, soman, tabun) to induce oxidative damage of DNA in lymphocytes, liver and brain during lethal or sublethal poisoning was investigated. The single strand breaks or oxidative base DNA damage was evaluated with the help of Comet assay and a specific enzyme able to detect oxidative bases of DNA (endonuclease III). While sarin and soman administered at sublethal doses corresponding to 50% of their LD50 values were not able to induce oxidative damage of DNA, their lethal dose (LD50) induced the significant increase of the number of oxidative bases in DNA of hepatocytes. In addition, tabun administered at lethal dose (LD50) induced significant increase of the number of single strand breaks and oxidative bases of DNA in glial cells isolated from pontomedullar brain region. Thus, some nerve agents were able to induce oxidative damage in the peripheral as well as central compartment but only in the case of severe poisoning caused by lethal doses of nerve agents. This non-cholinergic effect of nerve agents has probably consequences with nerve agents-induced hypoxic status during acute cholinergic crisis and it can contribute to their long-term toxic effects.</p>","PeriodicalId":14912,"journal":{"name":"Journal of applied biomedicine","volume":"17 4","pages":"225-230"},"PeriodicalIF":2.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The evaluation of oxidative damage of DNA after poisoning with nerve agents.\",\"authors\":\"Jiri Kassa, Rudolf Stetina\",\"doi\":\"10.32725/jab.2019.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The potency of three nerve agents (sarin, soman, tabun) to induce oxidative damage of DNA in lymphocytes, liver and brain during lethal or sublethal poisoning was investigated. The single strand breaks or oxidative base DNA damage was evaluated with the help of Comet assay and a specific enzyme able to detect oxidative bases of DNA (endonuclease III). While sarin and soman administered at sublethal doses corresponding to 50% of their LD50 values were not able to induce oxidative damage of DNA, their lethal dose (LD50) induced the significant increase of the number of oxidative bases in DNA of hepatocytes. In addition, tabun administered at lethal dose (LD50) induced significant increase of the number of single strand breaks and oxidative bases of DNA in glial cells isolated from pontomedullar brain region. Thus, some nerve agents were able to induce oxidative damage in the peripheral as well as central compartment but only in the case of severe poisoning caused by lethal doses of nerve agents. This non-cholinergic effect of nerve agents has probably consequences with nerve agents-induced hypoxic status during acute cholinergic crisis and it can contribute to their long-term toxic effects.</p>\",\"PeriodicalId\":14912,\"journal\":{\"name\":\"Journal of applied biomedicine\",\"volume\":\"17 4\",\"pages\":\"225-230\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.32725/jab.2019.017\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.32725/jab.2019.017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/11/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
The evaluation of oxidative damage of DNA after poisoning with nerve agents.
The potency of three nerve agents (sarin, soman, tabun) to induce oxidative damage of DNA in lymphocytes, liver and brain during lethal or sublethal poisoning was investigated. The single strand breaks or oxidative base DNA damage was evaluated with the help of Comet assay and a specific enzyme able to detect oxidative bases of DNA (endonuclease III). While sarin and soman administered at sublethal doses corresponding to 50% of their LD50 values were not able to induce oxidative damage of DNA, their lethal dose (LD50) induced the significant increase of the number of oxidative bases in DNA of hepatocytes. In addition, tabun administered at lethal dose (LD50) induced significant increase of the number of single strand breaks and oxidative bases of DNA in glial cells isolated from pontomedullar brain region. Thus, some nerve agents were able to induce oxidative damage in the peripheral as well as central compartment but only in the case of severe poisoning caused by lethal doses of nerve agents. This non-cholinergic effect of nerve agents has probably consequences with nerve agents-induced hypoxic status during acute cholinergic crisis and it can contribute to their long-term toxic effects.
期刊介绍:
Journal of Applied Biomedicine promotes translation of basic biomedical research into clinical investigation, conversion of clinical evidence into practice in all medical fields, and publication of new ideas for conquering human health problems across disciplines.
Providing a unique perspective, this international journal publishes peer-reviewed original papers and reviews offering a sensible transfer of basic research to applied clinical medicine. Journal of Applied Biomedicine covers the latest developments in various fields of biomedicine with special attention to cardiology and cardiovascular diseases, genetics, immunology, environmental health, toxicology, neurology and oncology as well as multidisciplinary studies. The views of experts on current advances in nanotechnology and molecular/cell biology will be also considered for publication as long as they have a direct clinical impact on human health. The journal does not accept basic science research or research without significant clinical implications. Manuscripts with innovative ideas and approaches that bridge different fields and show clear perspectives for clinical applications are considered with top priority.