{"title":"在一个安静和温控的房间里,在炎热环境中生活和工作对认知功能的影响:一项石油和天然气行业的研究。","authors":"Olivier Girard, Nadia Gaoua, Justin Grantham, Wade Knez, Andrew Walsh, Sebastien Racinais","doi":"10.1080/23328940.2021.1959289","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the effects of seasonal heat stress on cognitive function in outdoor workers. Thirty-nine workers from an oil and gas industry in the Middle-East volunteered for cognitive testing before (5.30 to 7.00 am) and after (3.30 to 5.00 pm) their daily work-shift in hot (August - average daily temperature: ~41°C) and temperate (January - average daily temperature: ~22°C) seasons. While physical activity was reduced in hot compared to temperate season (average normalized acceleration: 96 ± 33 <i>vs</i>. 112 ± 31 × 10<sup>-3</sup> g; -12.5 ± 4.7%; P = 0.010), the average core temperature during the work-shift was higher in the hot season (37.4 ± 0.2 <i>vs</i>. 37.2 ± 0.2°C; P = 0.002). Peak core temperature was 38.0 ± 0.1°C and 37.8 ± 0.1°C in hot and temperate seasons, respectively. Cognitive performance did not differ between seasons for tests of recognition memory (P = 0.169), working memory (P = 0.797) and executive function (P = 0.145), independent of testing time. Whereas there was no significant main effect of testing time for tests of recognition memory (P = 0.503) and working memory (P = 0.849), the number of problems solved on the first choice for the executive function test was lower in the afternoon than the morning (-9.2 ± 5.3%; P = 0.039). There was no season × testing time interaction for any cognitive tests (P ≥ 0.145). In the absence of hyperthermia, living and working in a hot environment does not alter cognitive function in oil and gas industry workers tested in a quiet and temperature-controlled room, with reduced clothing encumbrance (relative to work). Conclusions should not be extrapolated to more stressful situations (i.e., thermal stressor present, pronounced dehydration, noise).</p>","PeriodicalId":36837,"journal":{"name":"Temperature","volume":"8 4","pages":"372-380"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654476/pdf/KTMP_8_1959289.pdf","citationCount":"3","resultStr":"{\"title\":\"Effects of living and working in a hot environment on cognitive function in a quiet and temperature-controlled room: An oil and gas industry study.\",\"authors\":\"Olivier Girard, Nadia Gaoua, Justin Grantham, Wade Knez, Andrew Walsh, Sebastien Racinais\",\"doi\":\"10.1080/23328940.2021.1959289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate the effects of seasonal heat stress on cognitive function in outdoor workers. Thirty-nine workers from an oil and gas industry in the Middle-East volunteered for cognitive testing before (5.30 to 7.00 am) and after (3.30 to 5.00 pm) their daily work-shift in hot (August - average daily temperature: ~41°C) and temperate (January - average daily temperature: ~22°C) seasons. While physical activity was reduced in hot compared to temperate season (average normalized acceleration: 96 ± 33 <i>vs</i>. 112 ± 31 × 10<sup>-3</sup> g; -12.5 ± 4.7%; P = 0.010), the average core temperature during the work-shift was higher in the hot season (37.4 ± 0.2 <i>vs</i>. 37.2 ± 0.2°C; P = 0.002). Peak core temperature was 38.0 ± 0.1°C and 37.8 ± 0.1°C in hot and temperate seasons, respectively. Cognitive performance did not differ between seasons for tests of recognition memory (P = 0.169), working memory (P = 0.797) and executive function (P = 0.145), independent of testing time. Whereas there was no significant main effect of testing time for tests of recognition memory (P = 0.503) and working memory (P = 0.849), the number of problems solved on the first choice for the executive function test was lower in the afternoon than the morning (-9.2 ± 5.3%; P = 0.039). There was no season × testing time interaction for any cognitive tests (P ≥ 0.145). In the absence of hyperthermia, living and working in a hot environment does not alter cognitive function in oil and gas industry workers tested in a quiet and temperature-controlled room, with reduced clothing encumbrance (relative to work). Conclusions should not be extrapolated to more stressful situations (i.e., thermal stressor present, pronounced dehydration, noise).</p>\",\"PeriodicalId\":36837,\"journal\":{\"name\":\"Temperature\",\"volume\":\"8 4\",\"pages\":\"372-380\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654476/pdf/KTMP_8_1959289.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Temperature\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23328940.2021.1959289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Temperature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23328940.2021.1959289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Effects of living and working in a hot environment on cognitive function in a quiet and temperature-controlled room: An oil and gas industry study.
We investigate the effects of seasonal heat stress on cognitive function in outdoor workers. Thirty-nine workers from an oil and gas industry in the Middle-East volunteered for cognitive testing before (5.30 to 7.00 am) and after (3.30 to 5.00 pm) their daily work-shift in hot (August - average daily temperature: ~41°C) and temperate (January - average daily temperature: ~22°C) seasons. While physical activity was reduced in hot compared to temperate season (average normalized acceleration: 96 ± 33 vs. 112 ± 31 × 10-3 g; -12.5 ± 4.7%; P = 0.010), the average core temperature during the work-shift was higher in the hot season (37.4 ± 0.2 vs. 37.2 ± 0.2°C; P = 0.002). Peak core temperature was 38.0 ± 0.1°C and 37.8 ± 0.1°C in hot and temperate seasons, respectively. Cognitive performance did not differ between seasons for tests of recognition memory (P = 0.169), working memory (P = 0.797) and executive function (P = 0.145), independent of testing time. Whereas there was no significant main effect of testing time for tests of recognition memory (P = 0.503) and working memory (P = 0.849), the number of problems solved on the first choice for the executive function test was lower in the afternoon than the morning (-9.2 ± 5.3%; P = 0.039). There was no season × testing time interaction for any cognitive tests (P ≥ 0.145). In the absence of hyperthermia, living and working in a hot environment does not alter cognitive function in oil and gas industry workers tested in a quiet and temperature-controlled room, with reduced clothing encumbrance (relative to work). Conclusions should not be extrapolated to more stressful situations (i.e., thermal stressor present, pronounced dehydration, noise).