Cyrus Ayubcha, Grant Rigney, Austin J Borja, Thomas Werner, Abass Alavi
{"title":"Tau-PET成像作为阿尔茨海默病的分子模式。","authors":"Cyrus Ayubcha, Grant Rigney, Austin J Borja, Thomas Werner, Abass Alavi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most prevalent neurodegenerative condition. The definitive diagnosis of AD remains a post-mortem neuropathological study of the brain. Unfortunately, there are no established diagnostic criteria to achieve an accurate diagnosis of AD in a similarly objective fashion among living patients. Molecular imaging provides one way of enhancing clinical criteria where objective measures of AD correlate to the presence and progression of disease. In this article, the amyloid and tau hypotheses are considered with respect to pathological, imaging, and therapeutic studies. The value of beta-amyloid (Aβ) PET and tau PET are ascertained. Subsequently, the binding characteristics and quality of Aβ and tau tracers are explored. Finally, the value of Aβ and tau imaging in AD can be determined relevant from in-vivo studies of AD patients. Considering the evolving literature in AD and PET imaging, it has become clear that PET can play a role in the diagnosis and prognosis of AD. The use of Aβ imaging has been extensively studied with mixed results suggesting a limited clinical utility. Conversely, tau-PET has shown early success in similar applications as Aβ imaging. Specifically, we find that there is value in FDG-PET and prospective utility in tau-PET. Ultimately, the community must acknowledge that the role of Aβ imaging for diagnosing and managing AD is very limited and that FDG-PET will remain the study of choice at this time. Moreover, research efforts must continue to determine the prospective value of tau imaging to the assessment of this disease.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569333/pdf/ajnmmi0011-0374.pdf","citationCount":"0","resultStr":"{\"title\":\"Tau-PET imaging as a molecular modality for Alzheimer's disease.\",\"authors\":\"Cyrus Ayubcha, Grant Rigney, Austin J Borja, Thomas Werner, Abass Alavi\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is the most prevalent neurodegenerative condition. The definitive diagnosis of AD remains a post-mortem neuropathological study of the brain. Unfortunately, there are no established diagnostic criteria to achieve an accurate diagnosis of AD in a similarly objective fashion among living patients. Molecular imaging provides one way of enhancing clinical criteria where objective measures of AD correlate to the presence and progression of disease. In this article, the amyloid and tau hypotheses are considered with respect to pathological, imaging, and therapeutic studies. The value of beta-amyloid (Aβ) PET and tau PET are ascertained. Subsequently, the binding characteristics and quality of Aβ and tau tracers are explored. Finally, the value of Aβ and tau imaging in AD can be determined relevant from in-vivo studies of AD patients. Considering the evolving literature in AD and PET imaging, it has become clear that PET can play a role in the diagnosis and prognosis of AD. The use of Aβ imaging has been extensively studied with mixed results suggesting a limited clinical utility. Conversely, tau-PET has shown early success in similar applications as Aβ imaging. Specifically, we find that there is value in FDG-PET and prospective utility in tau-PET. Ultimately, the community must acknowledge that the role of Aβ imaging for diagnosing and managing AD is very limited and that FDG-PET will remain the study of choice at this time. Moreover, research efforts must continue to determine the prospective value of tau imaging to the assessment of this disease.</p>\",\"PeriodicalId\":7572,\"journal\":{\"name\":\"American journal of nuclear medicine and molecular imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569333/pdf/ajnmmi0011-0374.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of nuclear medicine and molecular imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of nuclear medicine and molecular imaging","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Tau-PET imaging as a molecular modality for Alzheimer's disease.
Alzheimer's disease (AD) is the most prevalent neurodegenerative condition. The definitive diagnosis of AD remains a post-mortem neuropathological study of the brain. Unfortunately, there are no established diagnostic criteria to achieve an accurate diagnosis of AD in a similarly objective fashion among living patients. Molecular imaging provides one way of enhancing clinical criteria where objective measures of AD correlate to the presence and progression of disease. In this article, the amyloid and tau hypotheses are considered with respect to pathological, imaging, and therapeutic studies. The value of beta-amyloid (Aβ) PET and tau PET are ascertained. Subsequently, the binding characteristics and quality of Aβ and tau tracers are explored. Finally, the value of Aβ and tau imaging in AD can be determined relevant from in-vivo studies of AD patients. Considering the evolving literature in AD and PET imaging, it has become clear that PET can play a role in the diagnosis and prognosis of AD. The use of Aβ imaging has been extensively studied with mixed results suggesting a limited clinical utility. Conversely, tau-PET has shown early success in similar applications as Aβ imaging. Specifically, we find that there is value in FDG-PET and prospective utility in tau-PET. Ultimately, the community must acknowledge that the role of Aβ imaging for diagnosing and managing AD is very limited and that FDG-PET will remain the study of choice at this time. Moreover, research efforts must continue to determine the prospective value of tau imaging to the assessment of this disease.
期刊介绍:
The scope of AJNMMI encompasses all areas of molecular imaging, including but not limited to: positron emission tomography (PET), single-photon emission computed tomography (SPECT), molecular magnetic resonance imaging, magnetic resonance spectroscopy, optical bioluminescence, optical fluorescence, targeted ultrasound, photoacoustic imaging, etc. AJNMMI welcomes original and review articles on both clinical investigation and preclinical research. Occasionally, special topic issues, short communications, editorials, and invited perspectives will also be published. Manuscripts, including figures and tables, must be original and not under consideration by another journal.