β-淀粉样蛋白前体蛋白(APP)和次黄嘌呤-鸟嘌呤磷酸核糖基转移酶(HGprt)酶在Lesch-Nyhan病和癌症中的潜在分子联系。

IF 3.1 Q2 NEUROSCIENCES
AIMS Neuroscience Pub Date : 2021-10-28 eCollection Date: 2021-01-01 DOI:10.3934/Neuroscience.2021030
Khue Vu Nguyen
{"title":"β-淀粉样蛋白前体蛋白(APP)和次黄嘌呤-鸟嘌呤磷酸核糖基转移酶(HGprt)酶在Lesch-Nyhan病和癌症中的潜在分子联系。","authors":"Khue Vu Nguyen","doi":"10.3934/Neuroscience.2021030","DOIUrl":null,"url":null,"abstract":"<p><p>Lesch-Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorders of purine metabolic in which the cytoplasmic enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. Despite having been characterized over 60 years ago, however, up to now, there is no satisfactory explanation of how deficits in enzyme HGprt can lead to LND with the development of the persistent and severe self-injurious behavior. Recently, a role for epistasis between the mutated hypoxanthine phosphoribosyltransferase 1 (<i>HPRT1</i>) and the β-amyloid precursor protein (APP) genes affecting the regulation of alternative APP pre-mRNA splicing in LND has been demonstrated. Furthermore, there were also some reported cases of LND developing thrombosis while APP is an important regulator of vein thrombosis and controls coagulation. Otherwise, the surface expression of HGprt enzyme was also observed in several somatic tissue cancers while APP and the APP-like protein-2 (APLP2) are deregulated in cancer cells and linked to increased tumor cell proliferation, migration, and invasion. The present review provides a discussion about these findings and suggests a potential molecular link between APP and HGprt via epistasis between <i>HPRT1</i> and <i>APP</i> genes affecting the regulation of alternative APP pre-mRNA splicing. As a perspective, expression vectors for HGprt enzyme and APP are constructed as described in Ref. # 24 (Nguyen KV, Naviaux RK, Nyhan WL (2020) Lesch-Nyhan disease: I. Construction of expression vectors for hypoxanthine-guanine phosphoribosyltransferase (HGprt) enzyme and amyloid precursor protein (APP). <i>Nucleosides Nucleotides Nucleic Acids</i> 39: 905-922), and they could be used as tools for clarification of these issues. In addition, these expression vectors, especially the one with the glycosyl-phosphatidylinositol (GPI) anchor can be used as a model for the construction of expression vectors for any protein targeting to the cell plasma membrane for studying intermolecular interactions and could be therefore useful in the vaccines as well as antiviral drugs development (studying intermolecular interactions between the spike glycoprotein of the severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, as well as its variants and the angiotensin-converting enzyme 2, ACE2, in coronavirus disease 2019 (COVID-19) [43],[44], for example).</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"8 4","pages":"548-557"},"PeriodicalIF":3.1000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611187/pdf/","citationCount":"4","resultStr":"{\"title\":\"Potential molecular link between the β-amyloid precursor protein (APP) and hypoxanthine-guanine phosphoribosyltransferase (HGprt) enzyme in Lesch-Nyhan disease and cancer.\",\"authors\":\"Khue Vu Nguyen\",\"doi\":\"10.3934/Neuroscience.2021030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lesch-Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorders of purine metabolic in which the cytoplasmic enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. Despite having been characterized over 60 years ago, however, up to now, there is no satisfactory explanation of how deficits in enzyme HGprt can lead to LND with the development of the persistent and severe self-injurious behavior. Recently, a role for epistasis between the mutated hypoxanthine phosphoribosyltransferase 1 (<i>HPRT1</i>) and the β-amyloid precursor protein (APP) genes affecting the regulation of alternative APP pre-mRNA splicing in LND has been demonstrated. Furthermore, there were also some reported cases of LND developing thrombosis while APP is an important regulator of vein thrombosis and controls coagulation. Otherwise, the surface expression of HGprt enzyme was also observed in several somatic tissue cancers while APP and the APP-like protein-2 (APLP2) are deregulated in cancer cells and linked to increased tumor cell proliferation, migration, and invasion. The present review provides a discussion about these findings and suggests a potential molecular link between APP and HGprt via epistasis between <i>HPRT1</i> and <i>APP</i> genes affecting the regulation of alternative APP pre-mRNA splicing. As a perspective, expression vectors for HGprt enzyme and APP are constructed as described in Ref. # 24 (Nguyen KV, Naviaux RK, Nyhan WL (2020) Lesch-Nyhan disease: I. Construction of expression vectors for hypoxanthine-guanine phosphoribosyltransferase (HGprt) enzyme and amyloid precursor protein (APP). <i>Nucleosides Nucleotides Nucleic Acids</i> 39: 905-922), and they could be used as tools for clarification of these issues. In addition, these expression vectors, especially the one with the glycosyl-phosphatidylinositol (GPI) anchor can be used as a model for the construction of expression vectors for any protein targeting to the cell plasma membrane for studying intermolecular interactions and could be therefore useful in the vaccines as well as antiviral drugs development (studying intermolecular interactions between the spike glycoprotein of the severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, as well as its variants and the angiotensin-converting enzyme 2, ACE2, in coronavirus disease 2019 (COVID-19) [43],[44], for example).</p>\",\"PeriodicalId\":7732,\"journal\":{\"name\":\"AIMS Neuroscience\",\"volume\":\"8 4\",\"pages\":\"548-557\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611187/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/Neuroscience.2021030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/Neuroscience.2021030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 4

摘要

Lesch-Nyhan病(LND)是一种罕见的嘌呤代谢的x连锁遗传神经遗传性疾病,其中细胞质酶,次黄嘌呤-鸟嘌呤磷酸化核糖转移酶(HGprt)存在缺陷。尽管HGprt酶缺陷在60多年前就已被发现,但到目前为止,关于HGprt酶缺陷如何导致LND并伴随持续和严重自伤行为的发展,还没有令人满意的解释。最近,突变的次黄嘌呤磷酸核糖基转移酶1 (HPRT1)和β-淀粉样蛋白前体蛋白(APP)基因之间的上位作用影响了LND中APP前mrna选择性剪接的调节。此外,还有一些LND形成血栓的报道,而APP是静脉血栓形成的重要调节剂,可以控制凝血。此外,HGprt酶的表面表达也在几种体细胞组织癌中被观察到,而APP和APP样蛋白-2 (APLP2)在癌细胞中被解除调控,并与肿瘤细胞增殖、迁移和侵袭增加有关。本文对这些发现进行了讨论,并提出APP和HGprt之间的潜在分子联系是通过HPRT1和APP基因之间的上位作用来影响APP前mrna剪接的调节。为此,参照文献# 24 (Nguyen KV, Naviaux RK, Nyhan WL(2020))构建HGprt酶和APP表达载体。Lesch-Nyhan病:I.次黄嘌呤-鸟嘌呤磷酸核糖基转移酶(HGprt)酶和淀粉样前体蛋白(APP)表达载体的构建。核苷(Nucleotides Nucleic Acids, 39: 905-922),它们可以作为澄清这些问题的工具。此外,这些表达载体,特别是具有糖基磷脂酰肌醇(GPI)锚点的表达载体,可作为构建任何靶向细胞膜的蛋白表达载体的模型,用于研究分子间相互作用,因此可用于疫苗和抗病毒药物的开发(研究严重急性呼吸综合征冠状病毒2,SARS-CoV-2的刺突糖蛋白,以及其变体和血管紧张素转换酶2 (ACE2)在2019冠状病毒病(COVID-19)中的作用[43],[44]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential molecular link between the β-amyloid precursor protein (APP) and hypoxanthine-guanine phosphoribosyltransferase (HGprt) enzyme in Lesch-Nyhan disease and cancer.

Lesch-Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorders of purine metabolic in which the cytoplasmic enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. Despite having been characterized over 60 years ago, however, up to now, there is no satisfactory explanation of how deficits in enzyme HGprt can lead to LND with the development of the persistent and severe self-injurious behavior. Recently, a role for epistasis between the mutated hypoxanthine phosphoribosyltransferase 1 (HPRT1) and the β-amyloid precursor protein (APP) genes affecting the regulation of alternative APP pre-mRNA splicing in LND has been demonstrated. Furthermore, there were also some reported cases of LND developing thrombosis while APP is an important regulator of vein thrombosis and controls coagulation. Otherwise, the surface expression of HGprt enzyme was also observed in several somatic tissue cancers while APP and the APP-like protein-2 (APLP2) are deregulated in cancer cells and linked to increased tumor cell proliferation, migration, and invasion. The present review provides a discussion about these findings and suggests a potential molecular link between APP and HGprt via epistasis between HPRT1 and APP genes affecting the regulation of alternative APP pre-mRNA splicing. As a perspective, expression vectors for HGprt enzyme and APP are constructed as described in Ref. # 24 (Nguyen KV, Naviaux RK, Nyhan WL (2020) Lesch-Nyhan disease: I. Construction of expression vectors for hypoxanthine-guanine phosphoribosyltransferase (HGprt) enzyme and amyloid precursor protein (APP). Nucleosides Nucleotides Nucleic Acids 39: 905-922), and they could be used as tools for clarification of these issues. In addition, these expression vectors, especially the one with the glycosyl-phosphatidylinositol (GPI) anchor can be used as a model for the construction of expression vectors for any protein targeting to the cell plasma membrane for studying intermolecular interactions and could be therefore useful in the vaccines as well as antiviral drugs development (studying intermolecular interactions between the spike glycoprotein of the severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, as well as its variants and the angiotensin-converting enzyme 2, ACE2, in coronavirus disease 2019 (COVID-19) [43],[44], for example).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Neuroscience
AIMS Neuroscience NEUROSCIENCES-
CiteScore
4.20
自引率
0.00%
发文量
26
审稿时长
8 weeks
期刊介绍: AIMS Neuroscience is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers from all areas in the field of neuroscience. The primary focus is to provide a forum in which to expedite the speed with which theoretical neuroscience progresses toward generating testable hypotheses. In the presence of current and developing technology that offers unprecedented access to functions of the nervous system at all levels, the journal is designed to serve the role of providing the widest variety of the best theoretical views leading to suggested studies. Single blind peer review is provided for all articles and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信