VSD-MOEA:一种具有显式可变空间分集管理的基于优势的多目标进化算法

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Joel Chacón Castillo;Carlos Segura;Carlos A. Coello Coello
{"title":"VSD-MOEA:一种具有显式可变空间分集管理的基于优势的多目标进化算法","authors":"Joel Chacón Castillo;Carlos Segura;Carlos A. Coello Coello","doi":"10.1162/evco_a_00299","DOIUrl":null,"url":null,"abstract":"Most state-of-the-art Multiobjective Evolutionary Algorithms (moeas) promote the preservation of diversity of objective function space but neglect the diversity of decision variable space. The aim of this article is to show that explicitly managing the amount of diversity maintained in the decision variable space is useful to increase the quality of moeas when taking into account metrics of the objective space. Our novel Variable Space Diversity-based MOEA (vsd-moea) explicitly considers the diversity of both decision variable and objective function space. This information is used with the aim of properly adapting the balance between exploration and intensification during the optimization process. Particularly, at the initial stages, decisions made by the approach are more biased by the information on the diversity of the variable space, whereas it gradually grants more importance to the diversity of objective function space as the evolution progresses. The latter is achieved through a novel density estimator. The new method is compared with state-of-art moeas using several benchmarks with two and three objectives. This novel proposal yields much better results than state-of-the-art schemes when considering metrics applied on objective function space, exhibiting a more stable and robust behavior.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"30 2","pages":"195-219"},"PeriodicalIF":4.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"VSD-MOEA: A Dominance-Based Multiobjective Evolutionary Algorithm with Explicit Variable Space Diversity Management\",\"authors\":\"Joel Chacón Castillo;Carlos Segura;Carlos A. Coello Coello\",\"doi\":\"10.1162/evco_a_00299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most state-of-the-art Multiobjective Evolutionary Algorithms (moeas) promote the preservation of diversity of objective function space but neglect the diversity of decision variable space. The aim of this article is to show that explicitly managing the amount of diversity maintained in the decision variable space is useful to increase the quality of moeas when taking into account metrics of the objective space. Our novel Variable Space Diversity-based MOEA (vsd-moea) explicitly considers the diversity of both decision variable and objective function space. This information is used with the aim of properly adapting the balance between exploration and intensification during the optimization process. Particularly, at the initial stages, decisions made by the approach are more biased by the information on the diversity of the variable space, whereas it gradually grants more importance to the diversity of objective function space as the evolution progresses. The latter is achieved through a novel density estimator. The new method is compared with state-of-art moeas using several benchmarks with two and three objectives. This novel proposal yields much better results than state-of-the-art schemes when considering metrics applied on objective function space, exhibiting a more stable and robust behavior.\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":\"30 2\",\"pages\":\"195-219\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9931084/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9931084/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

大多数先进的多目标进化算法(moeas)都提倡保持目标函数空间的多样性,而忽略了决策变量空间的多样。本文的目的是表明,在考虑目标空间的度量时,明确管理决策变量空间中保持的多样性数量有助于提高moeas的质量。我们提出的基于可变空间多样性的MOEA(vsd-MOEA)明确考虑了决策变量和目标函数空间的多样性。使用这些信息的目的是在优化过程中适当调整勘探和强化之间的平衡。特别是,在初始阶段,该方法所做的决策更偏向于变量空间多样性的信息,而随着进化的进展,它逐渐赋予目标函数空间多样性更多的重要性。后者是通过一种新颖的密度估计器实现的。使用具有两个和三个目标的几个基准,将新方法与最先进的moeas进行了比较。当考虑应用于目标函数空间的度量时,这种新的方案比现有技术的方案产生了更好的结果,表现出更稳定和稳健的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VSD-MOEA: A Dominance-Based Multiobjective Evolutionary Algorithm with Explicit Variable Space Diversity Management
Most state-of-the-art Multiobjective Evolutionary Algorithms (moeas) promote the preservation of diversity of objective function space but neglect the diversity of decision variable space. The aim of this article is to show that explicitly managing the amount of diversity maintained in the decision variable space is useful to increase the quality of moeas when taking into account metrics of the objective space. Our novel Variable Space Diversity-based MOEA (vsd-moea) explicitly considers the diversity of both decision variable and objective function space. This information is used with the aim of properly adapting the balance between exploration and intensification during the optimization process. Particularly, at the initial stages, decisions made by the approach are more biased by the information on the diversity of the variable space, whereas it gradually grants more importance to the diversity of objective function space as the evolution progresses. The latter is achieved through a novel density estimator. The new method is compared with state-of-art moeas using several benchmarks with two and three objectives. This novel proposal yields much better results than state-of-the-art schemes when considering metrics applied on objective function space, exhibiting a more stable and robust behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信