在温度升高和质体醌还原条件下,长聚藻球菌PCC 7942中保守双组分Hik2-Rre1信号被激活

Nachiketa Bairagi, Satoru Watanabe, Kaori Nimura-Matsune, Kenya Tanaka, Tatsuhiro Tsurumaki, Shuji Nakanishi, Kan Tanaka
{"title":"在温度升高和质体醌还原条件下,长聚藻球菌PCC 7942中保守双组分Hik2-Rre1信号被激活","authors":"Nachiketa Bairagi,&nbsp;Satoru Watanabe,&nbsp;Kaori Nimura-Matsune,&nbsp;Kenya Tanaka,&nbsp;Tatsuhiro Tsurumaki,&nbsp;Shuji Nakanishi,&nbsp;Kan Tanaka","doi":"10.1093/pcp/pcab158","DOIUrl":null,"url":null,"abstract":"<p><p>The highly conserved Hik2-Rre1 two-component system is a multi-stress responsive signal-transducing module that controls the expression of hsp and other genes in cyanobacteria. Previously, we found in Synechococcus elongatus PCC 7942 that the heat-inducible phosphorylation of Rre1 was alleviated in a hik34 mutant, suggesting that Hik34 positively regulates signaling. In this study, we examined the growth of the hik34 deletion mutant in detail, and newly identified suppressor mutations located in rre1 or sasA gene negating the phenotype. Subsequent analyses indicated that heat-inducible Rre1 phosphorylation is dependent on Hik2 and that Hik34 modulates this Hik2-dependent response. In the following part of this study, we focused on the mechanism to control the Hik2 activity. Other recent studies reported that Hik2 activity is regulated by the redox status of plastoquinone (PQ) through the 3Fe-4S cluster attached to the cyclic GMP, adenylyl cyclase, FhlA (GAF) domain. Consistent with this, Rre1 phosphorylation occurred after the addition of 2,5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone but not after the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea to the culture medium, which corresponded to PQ-reducing or -oxidizing conditions, respectively, suggesting that the Hik2-to-Rre1 phosphotransfer was activated under PQ-reducing conditions. However, there was no correlation between the measured PQ redox status and Rre1 phosphorylation during the temperature upshift. Therefore, changes in the PQ redox status are not the direct reason for the heat-inducible Rre1 phosphorylation, while some redox regulation is likely involved as oxidation events dependent on 2,6-dichloro-1,4-benzoquinone prevented heat-inducible Rre1 phosphorylation. On the basis of these results, we propose a model for the control of Hik2-dependent Rre1 phosphorylation.</p>","PeriodicalId":502140,"journal":{"name":"Plant & Cell Physiology","volume":" ","pages":"176-188"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Conserved Two-component Hik2-Rre1 Signaling Is Activated Under Temperature Upshift and Plastoquinone-reducing Conditions in the Cyanobacterium Synechococcus elongatus PCC 7942.\",\"authors\":\"Nachiketa Bairagi,&nbsp;Satoru Watanabe,&nbsp;Kaori Nimura-Matsune,&nbsp;Kenya Tanaka,&nbsp;Tatsuhiro Tsurumaki,&nbsp;Shuji Nakanishi,&nbsp;Kan Tanaka\",\"doi\":\"10.1093/pcp/pcab158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The highly conserved Hik2-Rre1 two-component system is a multi-stress responsive signal-transducing module that controls the expression of hsp and other genes in cyanobacteria. Previously, we found in Synechococcus elongatus PCC 7942 that the heat-inducible phosphorylation of Rre1 was alleviated in a hik34 mutant, suggesting that Hik34 positively regulates signaling. In this study, we examined the growth of the hik34 deletion mutant in detail, and newly identified suppressor mutations located in rre1 or sasA gene negating the phenotype. Subsequent analyses indicated that heat-inducible Rre1 phosphorylation is dependent on Hik2 and that Hik34 modulates this Hik2-dependent response. In the following part of this study, we focused on the mechanism to control the Hik2 activity. Other recent studies reported that Hik2 activity is regulated by the redox status of plastoquinone (PQ) through the 3Fe-4S cluster attached to the cyclic GMP, adenylyl cyclase, FhlA (GAF) domain. Consistent with this, Rre1 phosphorylation occurred after the addition of 2,5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone but not after the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea to the culture medium, which corresponded to PQ-reducing or -oxidizing conditions, respectively, suggesting that the Hik2-to-Rre1 phosphotransfer was activated under PQ-reducing conditions. However, there was no correlation between the measured PQ redox status and Rre1 phosphorylation during the temperature upshift. Therefore, changes in the PQ redox status are not the direct reason for the heat-inducible Rre1 phosphorylation, while some redox regulation is likely involved as oxidation events dependent on 2,6-dichloro-1,4-benzoquinone prevented heat-inducible Rre1 phosphorylation. On the basis of these results, we propose a model for the control of Hik2-dependent Rre1 phosphorylation.</p>\",\"PeriodicalId\":502140,\"journal\":{\"name\":\"Plant & Cell Physiology\",\"volume\":\" \",\"pages\":\"176-188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant & Cell Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/pcp/pcab158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant & Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcab158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高度保守的Hik2-Rre1双组分系统是蓝藻中控制热休克蛋白等基因表达的多应激响应信号转导模块。之前,我们在长聚球菌PCC 7942中发现hik34突变体中Rre1的热诱导磷酸化减轻,这表明hik34正调控信号传导。在这项研究中,我们详细检查了hik34缺失突变体的生长情况,并新发现了位于rre1或sasA基因的抑制突变,使表型阴性。随后的分析表明,热诱导的Rre1磷酸化依赖于Hik2, Hik34调节这种依赖于Hik2的反应。在接下来的研究中,我们将重点研究Hik2活性的调控机制。最近的其他研究报道,Hik2活性是通过连接环GMP、腺苷酸环化酶、FhlA (GAF)结构域的3Fe-4S簇,受plasoquinone (PQ)氧化还原状态的调节。与此一致的是,Rre1磷酸化发生在添加2,5-二溴-6-异丙基-3-甲基-1,4-苯醌后,而不发生在添加3-(3,4-二氯苯基)-1,1-二甲基脲后,分别对应于pq还原或-氧化条件,这表明在pq还原条件下激活了hik2到Rre1的磷酸化转移。然而,在温度升高过程中,PQ氧化还原状态与Rre1磷酸化之间没有相关性。因此,PQ氧化还原状态的变化并不是热诱导Rre1磷酸化的直接原因,而一些氧化还原调控可能涉及依赖于2,6-二氯-1,4-苯醌的氧化事件阻止了热诱导Rre1磷酸化。在这些结果的基础上,我们提出了一个控制hik2依赖性Rre1磷酸化的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conserved Two-component Hik2-Rre1 Signaling Is Activated Under Temperature Upshift and Plastoquinone-reducing Conditions in the Cyanobacterium Synechococcus elongatus PCC 7942.

The highly conserved Hik2-Rre1 two-component system is a multi-stress responsive signal-transducing module that controls the expression of hsp and other genes in cyanobacteria. Previously, we found in Synechococcus elongatus PCC 7942 that the heat-inducible phosphorylation of Rre1 was alleviated in a hik34 mutant, suggesting that Hik34 positively regulates signaling. In this study, we examined the growth of the hik34 deletion mutant in detail, and newly identified suppressor mutations located in rre1 or sasA gene negating the phenotype. Subsequent analyses indicated that heat-inducible Rre1 phosphorylation is dependent on Hik2 and that Hik34 modulates this Hik2-dependent response. In the following part of this study, we focused on the mechanism to control the Hik2 activity. Other recent studies reported that Hik2 activity is regulated by the redox status of plastoquinone (PQ) through the 3Fe-4S cluster attached to the cyclic GMP, adenylyl cyclase, FhlA (GAF) domain. Consistent with this, Rre1 phosphorylation occurred after the addition of 2,5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone but not after the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea to the culture medium, which corresponded to PQ-reducing or -oxidizing conditions, respectively, suggesting that the Hik2-to-Rre1 phosphotransfer was activated under PQ-reducing conditions. However, there was no correlation between the measured PQ redox status and Rre1 phosphorylation during the temperature upshift. Therefore, changes in the PQ redox status are not the direct reason for the heat-inducible Rre1 phosphorylation, while some redox regulation is likely involved as oxidation events dependent on 2,6-dichloro-1,4-benzoquinone prevented heat-inducible Rre1 phosphorylation. On the basis of these results, we propose a model for the control of Hik2-dependent Rre1 phosphorylation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信